相關(guān)習(xí)題
 0  264660  264668  264674  264678  264684  264686  264690  264696  264698  264704  264710  264714  264716  264720  264726  264728  264734  264738  264740  264744  264746  264750  264752  264754  264755  264756  264758  264759  264760  264762  264764  264768  264770  264774  264776  264780  264786  264788  264794  264798  264800  264804  264810  264816  264818  264824  264828  264830  264836  264840  264846  264854  266669 

科目: 來源: 題型:

【題目】母線長為,底面半徑為的圓錐內(nèi)有一球,與圓錐的側(cè)面、底面都相切,現(xiàn)放入一些小球,小球與圓錐底面、側(cè)面、球都相切,這樣的小球最多可放入__________個.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正方體的棱長為分別是棱,的中點,過點的平面分別與棱,交于點,設(shè).給出以下四個命題:

①平面與平面所成角的最大值為45°;

②四邊形的面積的最小值為;

③四棱錐的體積為

④點到平面的距離的最大值為.

其中命題正確的序號為(

A.②③④B.②③C.①②④D.③④

查看答案和解析>>

科目: 來源: 題型:

【題目】皮埃爾·德·費馬,法國律師和業(yè)余數(shù)學(xué)家,被譽為“業(yè)余數(shù)學(xué)家之王”,對數(shù)學(xué)界做出了重大貢獻,其中在1636年發(fā)現(xiàn)了:若是質(zhì)數(shù),且互質(zhì),那么次方除以的余數(shù)恒等于1,后來人們稱該定理為費馬小定理.依此定理若在數(shù)集中任取兩個數(shù),其中一個作為,另一個作為,則所取兩個數(shù)不符合費馬小定理的概率為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】(文科)已知函數(shù).

(1)若,求曲線在點處的切線方程;

(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤元,未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個開學(xué)季購進了盒該產(chǎn)品,以(單位:盒,)表示這個開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.

(1)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的眾數(shù)和平均數(shù);

(2)將表示為的函數(shù);

(3)根據(jù)直方圖估計利潤不少于元的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的圖象上存在關(guān)于原點對稱的點,求實數(shù)的取值范圍;

2)設(shè),已知上存在兩個極值點,,且,求證:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,已知曲線C1x2+y2=1,以平面直角坐標(biāo)系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線ρ(2cosθ-sinθ)=6.

)將曲線C1上的所有點的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的2倍后得到曲線C2,試寫出直線的直角坐標(biāo)方程和曲線C2的參數(shù)方程.

)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知三棱柱,平面平面,,分別是的中點.

(1)證明:;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為增進市民的環(huán)保意識,某市有關(guān)部門面向全體市民進行了一次環(huán)保知識的微信問卷測試活動,每位市民僅有一次參與問卷測試機會.通過抽樣,得到參與問卷測試的1000人的得分?jǐn)?shù)據(jù),制成頻率分布直方圖如圖所示.

(1)估計成績得分落在[86,100]中的概率.

(2)設(shè)這1000人得分的樣本平均值為

(i)求(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)

(ii)有關(guān)部門為參與此次活動的市民贈送20元或10元的隨機話費,每次獲贈20元或10元的隨機話費的概率分別為得分不低于的可獲贈2次隨機話費,得分低于的可獲贈1次隨機話費.求一位市民參與這次活動獲贈話費的平均估計值

查看答案和解析>>

科目: 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在,實驗地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.

(Ⅰ)求圖中的值;

(Ⅱ)用樣本估計總體,以頻率作為概率,若在,兩塊試驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

(Ⅲ)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計

甲培育法

20

乙培育法

10

合計

附:下面的臨界值表僅供參考.

0.15

0.10

0.05

0.025

0.010

0.005

<>0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.)

查看答案和解析>>

同步練習(xí)冊答案