科目: 來源: 題型:
【題目】如圖所示,有三根針和套在一根針上的個(gè)金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個(gè)金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.
將個(gè)金屬片從1號針移到3號針最少需要移動的次數(shù)記為,則__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若是的極值點(diǎn),且曲線在兩點(diǎn), 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市疾控中心流感監(jiān)測結(jié)果顯示,自年月起,該市流感活動一度出現(xiàn)上升趨勢,尤其是月以來,呈現(xiàn)快速增長態(tài)勢,截止目前流感病毒活動度仍處于較高水平,為了預(yù)防感冒快速擴(kuò)散,某校醫(yī)務(wù)室采取積極方式,對感染者進(jìn)行短暫隔離直到康復(fù).假設(shè)某班級已知位同學(xué)中有位同學(xué)被感染,需要通過化驗(yàn)血液來確定感染的同學(xué),血液化驗(yàn)結(jié)果呈陽性即為感染,呈陰性即未被感染.下面是兩種化驗(yàn)方法: 方案甲:逐個(gè)化驗(yàn),直到能確定感染同學(xué)為止;
方案乙:先任取個(gè)同學(xué),將它們的血液混在一起化驗(yàn),若結(jié)果呈陽性則表明感染同學(xué)為這位中的位,后再逐個(gè)化驗(yàn),直到能確定感染同學(xué)為止;若結(jié)果呈陰性則在另外位同學(xué)中逐個(gè)檢測;
(1)求依方案甲所需化驗(yàn)次數(shù)等于方案乙所需化驗(yàn)次數(shù)的概率;
(2)表示依方案甲所需化驗(yàn)次數(shù),表示依方案乙所需化驗(yàn)次數(shù),假設(shè)每次化驗(yàn)的費(fèi)用都相同,請從經(jīng)濟(jì)角度考慮那種化驗(yàn)方案最佳.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:的焦距為,且C過點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)、分別是橢圓C的下頂點(diǎn)和上頂點(diǎn),P是橢圓上異于、的任意一點(diǎn),過點(diǎn)P作軸于M,N為線段PM的中點(diǎn),直線與直線交于點(diǎn)D,E為線段的中點(diǎn),O為坐標(biāo)原點(diǎn),則是否為定值,若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)校組織高考組考工作,為了搞好接待組委會招募了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛運(yùn)動,其余不喜愛.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表;并要求列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為性別與喜愛運(yùn)動有關(guān)?
喜愛運(yùn)動 | 不喜愛運(yùn)動 | 總計(jì) | |
男 |
| ||
女 |
|
| |
總計(jì) |
|
(2)如果從喜歡運(yùn)動的女志愿者中(其中恰有人會外語),抽取名負(fù)責(zé)翻譯工作,則抽出的志愿者中人恰有一人勝任翻譯工作的概率是多少?
參考公式:,其中.
參考答數(shù):
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(Ⅰ)證明:平面平面;
(Ⅱ)若點(diǎn)為棱上一點(diǎn)且,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在菱形中,,為線段的中點(diǎn)(如圖1).將沿折起到的位置,使得平面平面,為線段的中點(diǎn)(如圖2).
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)當(dāng)四棱錐的體積為時(shí),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面四邊形中,,是,中點(diǎn),,,,將沿對角線折起至,使平面,則四面體中,下列結(jié)論不正確的是( )
A.平面
B.異面直線與所成的角為
C.異面直線與所成的角為
D.直線與平面所成的角為
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方為 (為參數(shù)),以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)設(shè),,為直線與曲線的兩個(gè)交點(diǎn),求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點(diǎn),使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com