科目: 來源: 題型:解答題
甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運(yùn)輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運(yùn)輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大的速度行駛?
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù),.
(1)若,則,滿足什么條件時,曲線與在處總有相同的切線?
(2)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時,若對任意的恒成立,求的取值的集合.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,現(xiàn)要在邊長為的正方形內(nèi)建一個交通“環(huán)島”.正方形的四個頂點(diǎn)為圓心在四個角分別建半徑為(不小于)的扇形花壇,以正方形的中心為圓心建一個半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.
(1)求的取值范圍;(運(yùn)算中取)
(2)若中間草地的造價為元,四個花壇的造價為元,其余區(qū)域的造價為元,當(dāng)取何值時,可使“環(huán)島”的整體造價最低?
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù),.
(1)若,則,滿足什么條件時,曲線與在處總有相同的切線?
(2)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時,若對任意的恒成立,求的取值的集合.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,現(xiàn)要在邊長為的正方形內(nèi)建一個交通“環(huán)島”.正方形的四個頂點(diǎn)為圓心在四個角分別建半徑為(不小于)的扇形花壇,以正方形的中心為圓心建一個半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.
(1)求的取值范圍;(運(yùn)算中取)
(2)若中間草地的造價為元,四個花壇的造價為元,其余區(qū)域的造價為元,當(dāng)取何值時,可使“環(huán)島”的整體造價最低?
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點(diǎn),且,求證:;
(Ⅲ)設(shè),對于任意時,總存在,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率.
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實數(shù)m的取值范圍;
(Ⅱ)設(shè),若對任意恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率.
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果對任意的,,有,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)若在x=處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com