【題目】已知函數(shù),其中.
(Ⅰ)當時,求函數(shù)在點處的切線方程;
(Ⅱ)設函數(shù)的導函數(shù)是,若不等式對于任意的實數(shù)恒成立,求實數(shù)的取值范圍;
(Ⅲ)設函數(shù),是函數(shù)的導函數(shù),若函數(shù)存在兩個極值點,,且,求實數(shù)的取值范圍.
【答案】(1);(2);(3)
【解析】
(Ⅰ)當時,,(1).,可得(1).利用點斜式即可得出切線方程.
(Ⅱ),.不等式,化為:.令在上恒成立,(1).可得在上恒成立,化為:即可得出.
(Ⅲ)根據(jù)可得和關于x的函數(shù)表達式,根據(jù)存在兩個極值點,,可得=0在上有兩個不等實數(shù)根,.因此,得出a的取值范圍.并根據(jù),滿足,代入簡化,利用導數(shù)研究其單調(diào)性即可得出結果.
解:(Ⅰ)當時,,(1).
,(1).
曲線在點(1,)處的切線方程為:,化為:.
(Ⅱ),.
不等式,即,化為:.
令在上恒成立,(1).
在上恒成立,化為:.
的取值范圍是.
(Ⅲ)設函數(shù),
,.
存在兩個極值點,,
在上有兩個不等實數(shù)根,.
因此,且,.
解得.
,,滿足,
.
化為:.
,.
化為:,
令(a),,(1).
,
(a)在上單調(diào)遞增,
.
實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的離心率為,以橢圓的上頂點為圓心作圓,
,圓與橢圓在第一象限交于點,在第二象限交于點.
(1)求橢圓的方程;
(2)求的最小值,并求出此時圓的方程;
(3)設點是橢圓上異于的一點,且直線分別與軸交于點為坐標原點,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,,,,,點在線段上,且.
(Ⅰ)求證:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)在線段上是否存在點,使得,若存在,求出線段的長,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,若對任意的恒成立,求實數(shù)的值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前n項和為,對任意正整數(shù)n,皆滿足(實常數(shù)).在等差數(shù)())中,,.
(1)求數(shù)列的通項公式;
(2)試判斷數(shù)列能否成等比數(shù)列,并說明理由;
(3)若,,求數(shù)列的前n項和,并計算:(已知).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的值域;
(3)若,過原點分別作曲線的切線、,且兩切線的斜率互為倒數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C和橢圓有公共的焦點,且離心率為.
(1)求雙曲線C的方程.
(2)經(jīng)過點M(2,1)作直線l交雙曲線C于A,B兩點,且M為AB的中點,求直線l的方程并求弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com