在三棱錐S-ABC中,若底面ABC是邊長等于2
3
的正三角形,SA與底面ABC垂直,SA=6,點M,N分別為SB,AC的中點,則異面直線MN與BC所成角的大小為______.
取AB的中點D,連結(jié)MD,DN,因為M,N分別為SB,AC的中點,所以DN為三角形ABC的中位線,
所以DNBC,且DN=
1
2
BC=
1
2
×2
3
=
3
,所以MN與DN所成的角即為異面直線MN與BC所成角,
因為SA與底面ABC垂直,所以DMSA,所以DM⊥ABC,
即DM⊥DN,所以三角形MDN為直角三角形.
因為DM=
1
2
SA=
1
2
×6=3
,所以在直角三角形MDN中,
tanMDN=
DM
DN
=
3
3
=
3
,所以∠MDN=60°,
故異面直線MN與BC所成角的大小為60°
故答案為:60°
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

過正方形ABCD的頂點A作線段AA1⊥平面ABCD,且AA1=AB,則平面ABA1與平面CDA1所成的二面角的度數(shù)是(    )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設D、E是△ABC的邊AB上的兩點,已知∠ACD=∠BCEAC=14,AD=7,AB=28,CE=12.求BC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,點E、M分別為A1B、C1C的中點,過點A1,B,M三點的平面A1BMN交C1D1于點N.
(Ⅰ)求證:EM∥平面A1B1C1D1
(Ⅱ)求二面角B—A1N—B1的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(理)如圖,已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側(cè)棱CC1的中點,則異面直線AB1和BM所成的角的大小是( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知P為△ABC所在平面外的一點,PC⊥AB,PC=AB=2,E、F分別為PA和BC的中點
(1)求EF與PC所成的角;
(2)求線段EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

記動點P是棱長為1的正方體ABCD-A1B1C1D1的對角線BD1上一點,記
D1P
D1B
.當∠APC為鈍角時,則λ的取值范圍為( 。
A.(0,1)B.(
1
3
,1)
C.(0,
1
3
)
D.(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1,∠BAC=90°,D為棱BB1的中點
(Ⅰ)求異面直線C1D與A1C所成的角;
(Ⅱ)求證:平面A1DC⊥平面ADC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在棱長為1的正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點,那么直線AM與CN所成角的余弦值是( 。
A.
3
2
B.
10
10
C.
3
5
D.
2
5

查看答案和解析>>

同步練習冊答案