曲線y2=4x關(guān)于直線x=2對稱的曲線方程是(  )
A.y2=8-4xB.y2=4x-8
C.y2=16-4xD.y2=4x-16
C
要求曲線y2=4x關(guān)于直線x=2對稱的曲線方程,我們可采用坐標(biāo)法,即設(shè)出待求曲線上任一點為P(x,y),然后根據(jù)P點關(guān)于直線x=2對稱的Q(4-x,y)在曲線y2=4x上,然后將Q點代入曲線y2=4x中,即可得到x,y之間的關(guān)系,即為所求曲線的方程.
解:設(shè)曲線y2=4x關(guān)于直線x=2對稱的曲線為C,
在曲線C上任取一點P(x,y),
則P(x,y)關(guān)于直線x=2的對稱點為Q(4-x,y).
因為Q(4-x,y)在曲線y2=4x上,
所以y2=4(4-x),
即y2=16-4x.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線上橫坐標(biāo)是5的點到其焦點的距離是8,則以為圓
心,且與雙曲線的漸近線相切的圓的方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知是拋物線上兩個不同點,且,直線是線段的垂直平分線.設(shè)橢圓E的方程為

(Ⅰ)當(dāng)上移動時,求直線斜率的取值范圍;
(Ⅱ)已知直線與拋物線交于A、B兩個不同點, 與橢圓交于P、Q兩個不同點,設(shè)AB中點為,
PQ中點為,若,求離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l過拋物線C∶y2=2px(p>0)的焦點F,且交拋物線C于A,B兩點,分別從A,B兩點向拋物線的準(zhǔn)線引垂線,垂足分別為A1,B1,則∠A1FB1
(  )
A.銳角B.直角
C.鈍角D.直角或鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y2=2px(p>0)焦點為F,準(zhǔn)線為L,經(jīng)過F的直線與拋物線交于A、B兩點,交準(zhǔn)線于C點,點A在x軸上方,AK⊥L,垂足為K,若|BC|=2|BF|,且|AF|=4,則△AKF的面積是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知過拋物線y2=2px(p>0)的焦點F的直線交拋物線于A(x1,y1),B(x2,y2)兩點.求證:(1)x1x2為定值;(2)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
(平行班做)已知拋物線 y ="x2" -4與直線y =" x" + 2。
(1)求兩曲線的交點;
(2)求拋物線在交點處的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線方程為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為拋物線上的動點,點軸上的射影為,點的坐標(biāo)是,則的最小值是                               (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案