【題目】在空間直角坐標(biāo)系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, ),若S1 , S2 , S3分別表示三棱錐D﹣ABC在xOy,yOz,zOx坐標(biāo)平面上的正投影圖形的面積,則(
A.S1=S2=S3
B.S2=S1且S2≠S3
C.S3=S1且S3≠S2
D.S3=S2且S3≠S1

【答案】D
【解析】解:設(shè)A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, ),則各個(gè)面上的射影分別為A',B',C',D',
在xOy坐標(biāo)平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=
在yOz坐標(biāo)平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1, ),S2=.
在zOx坐標(biāo)平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1, ),S3= ,
則S3=S2且S3≠S1
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=aexlnx+ ,曲線y=f(x)在點(diǎn)(1,f(1))處得切線方程為y=e(x﹣1)+2.
(1)求a、b;
(2)證明:f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014福建)在下列向量組中,可以把向量 =(3,2)表示出來(lái)的是( )
A.=(0,0), =(1,2)
B.=(﹣1,2), =(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線E: =1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.

(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點(diǎn),動(dòng)直線l分別交直線l1 , l2于A,B兩點(diǎn)(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個(gè)公共點(diǎn)的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在 R 上的奇函數(shù) f (x) ,設(shè)其導(dǎo)函數(shù)為 f x ,當(dāng) x ,0時(shí),恒有xf x f x 0 ,令 F x xf x,則滿足 F(3) F 2x 1 的實(shí)數(shù) x 的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明在10場(chǎng)籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場(chǎng)比賽相互獨(dú)立);

場(chǎng)次

投籃次數(shù)

命中次數(shù)

場(chǎng)次

投籃次數(shù)

命中次數(shù)

主場(chǎng)1

22

12

客場(chǎng)1

18

8

主場(chǎng)2

15

12

客場(chǎng)2

13

12

主場(chǎng)3

12

8

客場(chǎng)3

21

7

主場(chǎng)4

23

8

客場(chǎng)4

18

15

主場(chǎng)5

24

20

客場(chǎng)5

25

12


(1)從上述比賽中隨機(jī)選擇一場(chǎng),求李明在該場(chǎng)比賽中投籃命中率超過(guò)0.6的概率;
(2)從上述比賽中隨機(jī)選擇一個(gè)主場(chǎng)和一個(gè)客場(chǎng),求李明的投籃命中率一場(chǎng)超過(guò)0.6,一場(chǎng)不超過(guò)0.6的概率;
(3)記 是表中10個(gè)命中次數(shù)的平均數(shù),從上述比賽中隨機(jī)選擇一場(chǎng),記X為李明在這場(chǎng)比賽中的命中次數(shù),比較EX與 的大小(只需寫(xiě)出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將函數(shù)f(x)=sin(2x+ )的圖象向右平移φ個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則φ的最小正值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行的“三色球”購(gòu)物摸獎(jiǎng)活動(dòng)規(guī)定:在一次摸獎(jiǎng)中,摸獎(jiǎng)?wù)呦葟难b有3個(gè)紅球與4個(gè)白球的袋中任意摸出3個(gè)球,再?gòu)难b有1個(gè)藍(lán)球與2個(gè)白球的袋中任意摸出1個(gè)球,根據(jù)摸出4個(gè)球中紅球與藍(lán)球的個(gè)數(shù),設(shè)一、二、三等獎(jiǎng)如下:

獎(jiǎng)級(jí)

摸出紅、藍(lán)球個(gè)數(shù)

獲獎(jiǎng)金額

一等獎(jiǎng)

3紅1藍(lán)

200元

二等獎(jiǎng)

3紅0藍(lán)

50元

三等獎(jiǎng)

2紅1藍(lán)

10元

其余情況無(wú)獎(jiǎng)且每次摸獎(jiǎng)最多只能獲得一個(gè)獎(jiǎng)級(jí).
(1)求一次摸獎(jiǎng)恰好摸到1個(gè)紅球的概率;
(2)求摸獎(jiǎng)?wù)咴谝淮蚊?jiǎng)中獲獎(jiǎng)金額x的分布列與期望E(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案