【題目】設(shè)橢圓C: =1(a>b>0)的焦點(diǎn)F1 , F2 , 過右焦點(diǎn)F2的直線l與C相交于P、Q兩點(diǎn),若△PQF1的周長為短軸長的2 倍.
(1)求C的離心率;
(2)設(shè)l的斜率為1,在C上是否存在一點(diǎn)M,使得 ?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

【答案】
(1)解:∵橢圓C: =1(a>b>0)的焦點(diǎn)F1,F(xiàn)2,過右焦點(diǎn)F2的直線l與C相交于P、Q兩點(diǎn),

△PQF1的周長為短軸長的2 倍,△PQF1的周長為4a

∴依題意知 ,即

∴C的離心率


(2)解:設(shè)橢圓方程為 ,直線的方程為y=x﹣c,

代入橢圓方程得

設(shè)P(x1,y1),Q(x2,y2),則 ,

設(shè)M(x0,y0),則

代入①得

因?yàn)? , ,

所以

從而②式不成立.

故不存在點(diǎn)M,使 成立


【解析】(1)由橢圓的焦點(diǎn)F1 , F2 , 過右焦點(diǎn)F2的直線l與C相交于P、Q兩點(diǎn),△PQF1的周長為短軸長的2 倍,得到 ,由此能求出橢圓C的離心率.(2)設(shè)橢圓方程為 ,直線的方程為y=x﹣c,代入橢圓方程得 ,由此利用韋達(dá)定理、橢圓性質(zhì)、向量知識(shí),結(jié)合已知條件能求出不存在點(diǎn)M,使 成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,a2=5,{an}的前n項(xiàng)和Sn , 且滿足Sn+Sn2=2Sn1+2n1(n≥3).
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn
(3)證明:對任意給定的m∈(0, ),均存在n0∈N+ , 使得當(dāng)n≥n0時(shí),(2)中的Tn>m恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取的最小正值時(shí),n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在定義域[﹣1,1]是奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣3x2
(1)當(dāng)x∈[0,1],求f(x);
(2)對任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形,.

(1)證明:面;

(2)若與底面所成的角為, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣mx(m∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m≥ 時(shí),設(shè)g(x)=2f(x)+x2的兩個(gè)極值點(diǎn)x1 , x2(x1<x2)恰為h(x)=lnx﹣cx2﹣bx的零點(diǎn),求y=(x1﹣x2)h′( )的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|.
(1)若不等式f(x+ )≥2m+1(m>0)的解集為(﹣∞,﹣2]∪[2,+∞),求實(shí)數(shù)m的值;
(2)若不等式f(x)≤2y+ +|2x+3|,對任意的實(shí)數(shù)x,y∈R恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊平行四邊形綠地ABCD,經(jīng)測量BC=2百米,CD=1百米,∠BCD=120°,擬過線段BC上一點(diǎn)E設(shè)計(jì)一條直路EF(點(diǎn)F在四邊形ABCD的邊上,不計(jì)路的寬度),將綠地分為面積之比為1:3的左右兩部分,分別種植不同的花卉,設(shè)EC=x百米,EF=y百米.

(1)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),試確定點(diǎn)E的位置;
(2)試求x的值,使路EF的長度y最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,△ABC是邊長為2的正三角形,∠PCA=90°,E,H分別為AP,AC的中點(diǎn),AP=4,BE=
(Ⅰ)求證:AC⊥平面BEH;
(Ⅱ)求直線PA與平面ABC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案