【題目】函數(shù)f(x)=2﹣ax+1(a>0且a≠1)的圖象恒過定點( )
A.(0,2)
B.(1,2)
C.(﹣1,1)
D.(﹣1,2)

【答案】C
【解析】解:由x+1=0得x=﹣1,則f(﹣1)=2﹣a0=1,
∴函數(shù)f(x)=2﹣ax+1的圖象恒過定點(﹣1,1),
故選C.
【考點精析】認(rèn)真審題,首先需要了解指數(shù)函數(shù)的圖像與性質(zhì)(a0=1, 即x=0時,y=1,圖象都經(jīng)過(0,1)點;ax=a,即x=1時,y等于底數(shù)a;在0<a<1時:x<0時,ax>1,x>0時,0<ax<1;在a>1時:x<0時,0<ax<1,x>0時,ax>1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b∈R,那么a2>b2是|a|>b的(
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|mx2+2x﹣1=0},若集合A中只有一個元素,則實數(shù)m的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x)=g(x)+x2 , 且當(dāng)x≥0時,g(x)=log2(x+1),則g(﹣1)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入互聯(lián)網(wǎng)時代,發(fā)電子郵件是必不可少的.一般而言,發(fā)電子郵件要分以下幾個步驟:a..打開電子信箱;b.輸入發(fā)送地址;c.輸主主題;d.輸入信件內(nèi)容;e.點擊“寫郵件”;f.點擊“發(fā)送郵件”,則正確的流程是( )
A.a→b→c→d→e→f
B.a→c→d→f→e→b
C.a→e→b→c→d→f
D.b→a→c→d→f→e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的( 。
A.充分條件
B.必要條件
C.充要條件
D.等價條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c是互不相等的實數(shù),求證:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b確定的三條拋物線至少有一條與x軸有兩個不同的交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)給出的數(shù)塔猜測123456×9+7=(  )
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111
……
A.1111110
B.1111111
C.1111112
D.1111113

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a2=2,a3=4,則a10=(
A.12
B.14
C.16
D.18

查看答案和解析>>

同步練習(xí)冊答案