已知定義在上的函數(shù)滿足,且的導函數(shù)上恒有,則不等式的解集為(    )
A.B.C.D.
A

試題分析:可化為,令,則,
因為,所以0,所以上單調(diào)遞減,
時,,即
所以不等式的解集為.故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是正實數(shù),設函數(shù)。
(Ⅰ)設,求的單調(diào)區(qū)間;
(Ⅱ)若存在,使成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知R,函數(shù)e
(1)若函數(shù)沒有零點,求實數(shù)的取值范圍;
(2)若函數(shù)存在極大值,并記為,求的表達式;
(3)當時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

預計某地區(qū)明年從年初開始的前個月內(nèi),對某種商品的需求總量 (萬件)近似滿足:N*,且
(1)寫出明年第個月的需求量(萬件)與月份 的函數(shù)關(guān)系式,并求出哪個月份的需求量超過萬件;
(2)如果將該商品每月都投放到該地區(qū)萬件(不包含積壓商品),要保證每月都滿足供應, 應至少為多少萬件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設,若在上至少存在一點,使得成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)滿足,,則當時,(   )
A.有極大值,無極小值B.有極小值,無極大值
C.既無極大值,也無極小值D.既有極大值,又有極小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)求使上是減函數(shù)的充要條件;
(2)求上的最大值。

查看答案和解析>>

同步練習冊答案