已知橢圓與雙曲線(m>0,n>0)具有相同的焦點(diǎn)F1,F(xiàn)2,設(shè)兩曲線的一個(gè)交點(diǎn)為Q,∠QF1F2=90°,則雙曲線的離心率為    
【答案】分析:根據(jù)橢圓的方程可求得其半焦距,利用橢圓和雙曲線有相同的焦點(diǎn)可求得雙曲線的半焦距,把x=3代入橢圓方程求得Q的坐標(biāo),利用∠QF1F2=90°推斷出QF1⊥x軸,進(jìn)而可求得|QF1|,利用橢圓的定義求得|QF2|,進(jìn)而利用雙曲線的定義求得雙曲線的長(zhǎng)軸的長(zhǎng),求得m的值,最后利用e=求得答案.
解答:解:根據(jù)橢圓方程可得橢圓的半焦距c==3
把x=3代入橢圓方程求得y=±
∴|QF1|=,|QF2|=10-=
根據(jù)雙曲線的定義可知2m=-=
∴m=
∴e==
故答案為:
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì),圓錐曲線的共同特征.考查了學(xué)生對(duì)圓錐曲線基礎(chǔ)知識(shí)的綜合掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年江蘇省南通市如東縣高二(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓與雙曲線(m>0,n>0)具有相同的焦點(diǎn)F1,F(xiàn)2,設(shè)兩曲線的一個(gè)交點(diǎn)為Q,∠QF1F2=90°,則雙曲線的離心率為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005-2006學(xué)年江蘇省常州市武進(jìn)區(qū)前黃高中高二(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓與雙曲線(m>0,n>0)具有相同的焦點(diǎn)F1,F(xiàn)2,設(shè)兩曲線的一個(gè)交點(diǎn)為Q,∠QF1F2=90°,則雙曲線的離心率為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高中數(shù)學(xué)綜合測(cè)試卷(選修1-1)(解析版) 題型:填空題

已知橢圓與雙曲線(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a、m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)單元檢測(cè):圓錐曲線(2)(解析版) 題型:選擇題

已知橢圓與雙曲線(m,n,p,q∈R+)有共同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個(gè)公共交點(diǎn).則|PF1|•|PF2|的值是( )
A.p2-m2
B.p-m
C.m-p
D.m2-p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考考前數(shù)學(xué)客觀題訓(xùn)練2(理科)(解析版) 題型:選擇題

已知橢圓與雙曲線(m,n,p,q∈R+)有共同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個(gè)公共交點(diǎn).則|PF1|•|PF2|的值是( )
A.p2-m2
B.p-m
C.m-p
D.m2-p2

查看答案和解析>>

同步練習(xí)冊(cè)答案