【題目】給定數(shù)列{cn},如果存在常數(shù)p、q使得cn+1=pcn+q對任意n∈N*都成立,則稱{cn}為“M類數(shù)列”.
(1)若{an}是公差為d的等差數(shù)列,判斷{an}是否為“M類數(shù)列”,并說明理由;
(2)若{an}是“M類數(shù)列”且滿足:a1=2,an+an+1=32n.
①求a2、a3的值及{an}的通項(xiàng)公式;
②設(shè)數(shù)列{bn}滿足:對任意的正整數(shù)n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=32n+1﹣4n﹣6,且集合M={n|≥λ,n∈N*}中有且僅有3個元素,試求實(shí)數(shù)λ的取值范圍.
【答案】(1)見解析;(2)① ,;②
【解析】
(1)通過an+1=an+d與cn+1=pcn+q比較可知p=1、q=d,進(jìn)而可得結(jié)論;
(2)①通過a1=2、an+an+1=32n計(jì)算出a2、a3的值,進(jìn)而利用數(shù)列{an}是“M類數(shù)列”代入計(jì)算可知數(shù)列{an}是以首項(xiàng)、公比均為2的等比數(shù)列,計(jì)算可得結(jié)論;②通過①可知2bn+22bn﹣1+23bn﹣2+…+2nb1=32n+1﹣4n﹣6,利用2bn=(2bn+22bn﹣1+23bn﹣2+…+2nb1)﹣(22bn﹣1+23bn﹣2+…+2nb1)計(jì)算可知bn=2n﹣1,從而M={n|≥λ,n∈N*},分別計(jì)算出當(dāng)n=1、2、3時λ的值,進(jìn)而可得結(jié)論.
(1)結(jié)論:公差為d的等差數(shù)列是“M類數(shù)列”.理由如下:
∵數(shù)列{an}是公差為d的等差數(shù)列,∴an+1=an+d,此時p=1、q=d,
即公差為d的等差數(shù)列是“M類數(shù)列”;
(2)①∵a1=2,an+an+1=32n,∴a2=32﹣a1=4,,
又∵數(shù)列{an}是“M類數(shù)列”,∴,即,解得:p=2,q=0,
即an+1=2an,又∵a1=2,∴數(shù)列{an}是以首項(xiàng)、公比均為2的等比數(shù)列,
∴數(shù)列{an}的通項(xiàng)公式an=2n;
②由①可知a1bn+a2bn﹣1+a3bn﹣2+…+anb1=32n+1﹣4n﹣6,
即2bn+22bn﹣1+23bn﹣2+…+2nb1=32n+1﹣4n﹣6,
∴2bn﹣1+22bn﹣2+23bn﹣3+…+2n﹣1b1=32n﹣4(n﹣1)﹣6=32n﹣4n﹣2,
∴22bn﹣1+23bn﹣2+…+2nb1=32n+1﹣8n﹣4,
∴2bn=(2bn+22bn﹣1+23bn﹣2+…+2nb1)﹣(22bn﹣1+23bn﹣2+…+2nb1)
=(32n+1﹣4n﹣6)﹣(32n+1﹣8n﹣4)
=4n﹣2,
即bn=2n﹣1,當(dāng)時,也符合上式,所以bn=2n﹣1.
∴集合M={n|≥λ,n∈N*}={n|≥λ,n∈N*},
當(dāng)n=1時,λ≤
當(dāng)n=3時,λ≤ ;當(dāng)n≥4時,λ≤;
又∵集合M={n|≥λ,n∈N*}中有且僅有3個元素,∴,
故實(shí)數(shù)λ的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一直角墻角,,墻角的兩堵墻面和地面兩兩互相垂直.是一塊長為米,寬為米的板材,現(xiàn)欲用板材與墻角圍成一個直棱柱空間堆放谷物.
(1)若按如圖(1)放置,如何放置板材才能使這個直棱柱空間最大?
(2)由于墻面使用受限,面只能使用米,面只能使用米.此矩形板材可以折疊圍成一個直四棱柱空間,如圖(2),如何折疊板材才能使這個空間最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,過且垂直于軸的焦點(diǎn)弦的弦長為,過的直線交橢圓于,兩點(diǎn),且的周長為.
(1)求橢圓的方程;
(2)已知直線,互相垂直,直線過且與橢圓交于點(diǎn),兩點(diǎn),直線過且與橢圓交于,兩點(diǎn).求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設(shè)小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時,求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點(diǎn)D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知流程圖如下圖所示,該程序運(yùn)行后,為使輸出的值為16,則循環(huán)體的判斷框內(nèi)①處應(yīng)填( )
A. 2 B. 3 C. 5 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱是“回歸數(shù)列”.
(1)①前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
②通項(xiàng)公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
(2)設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值;
(3)是否對任意的等差數(shù)列,總存在兩個“回歸數(shù)列”和,使得成立,請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,與均是以為直角頂點(diǎn)的等腰直角三角形,點(diǎn)是的中點(diǎn),點(diǎn)是邊上的任意一點(diǎn).
(1)求證::
(2)在平面中,是否總存在與平面平行的直線?若存在,請作出圖形并說明:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com