【題目】定義行列式的運(yùn)算如下:,已函數(shù)以下命題正確的是( )
①對(duì),都有;②若,對(duì),總存在非零常數(shù)了,使得;③若存在直線與的圖象無(wú)公共點(diǎn),且使的圖案位于直線兩側(cè),此直線即稱為函數(shù)的分界線.則的分界線的斜率的取值范圍是;④函數(shù)的零點(diǎn)有無(wú)數(shù)個(gè).
A.①③④B.①②④
C.②③D.①④
【答案】D
【解析】
根據(jù)行列式的運(yùn)算定義可得,根據(jù)奇函數(shù)定義可判斷分段函數(shù)為奇函數(shù),所以①正確;根據(jù)的單調(diào)性和奇偶性可知不是周期函數(shù),所以不是周期函數(shù),所以②錯(cuò)誤;利用導(dǎo)數(shù)求出函數(shù)的過(guò)原點(diǎn)的切線的斜率,再根據(jù)的圖像的對(duì)稱性可得界線斜率的取值范圍應(yīng)為,故③錯(cuò)誤;根據(jù)在區(qū)間上單調(diào)遞減,時(shí),,且,可知有無(wú)數(shù)個(gè)解,所以函數(shù)的零點(diǎn)有無(wú)數(shù)個(gè),④正確.
由題知,
當(dāng)時(shí),,所以 ,同理時(shí)亦有,所以①正確;
又時(shí),,,,為奇函數(shù),知的增區(qū)間為,,減區(qū)間為,,則不存在周期性,故不是周期函數(shù),所以②錯(cuò)誤;
當(dāng)時(shí),過(guò)原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線斜率,由此直線過(guò)原點(diǎn)得,所以,結(jié)合②中在區(qū)間上單調(diào)遞增;在區(qū)間上單調(diào)遞減,且時(shí),,且,可得時(shí),的分界線的斜率的取值范圍是,又為奇函數(shù),可得時(shí),的分界線的斜率的取值范圍是.所以分界線斜率的取值范圍應(yīng)為,故③錯(cuò)誤;
由上可知,在區(qū)間上單調(diào)遞減,時(shí),,且,所以有無(wú)數(shù)個(gè)解,所以函數(shù)的零點(diǎn)有無(wú)數(shù)個(gè),④正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的極值;
(2)證明:時(shí),
(3)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為,設(shè)且的最大值是,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線:(α為參數(shù))經(jīng)過(guò)伸縮變換得到曲線,在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)設(shè)點(diǎn)P是曲線上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離d的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的側(cè)棱與四棱錐的側(cè)棱都與底面垂直,,,,,,.
(1)證明:平面;
(2)在棱上是否存在點(diǎn)M,使平面與平面所成角的正弦值為?如果存在,指出M點(diǎn)的位置;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,如圖,分別交軸正半軸于點(diǎn).射線分別交于點(diǎn),動(dòng)點(diǎn)滿足直線與軸垂直,直線與軸垂直.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)作直線交曲線與點(diǎn),射線與點(diǎn),且交曲線于點(diǎn).問(wèn):的值是否是定值?如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)().
(1)試討論函數(shù)的單調(diào)性;
(2)設(shè),記,當(dāng)時(shí),若函數(shù)與函數(shù)有兩個(gè)不同交點(diǎn),,設(shè)線段的中點(diǎn)為,試問(wèn)s是否為的根?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足奇數(shù)項(xiàng)成等差,公差為,偶數(shù)項(xiàng)成等比,公比為,且數(shù)列的前項(xiàng)和為,,.
若,.
①求數(shù)列的通項(xiàng)公式;
②若,求正整數(shù)的值;
若,,對(duì)任意給定的,是否存在實(shí)數(shù),使得對(duì)任意恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在處的切線方程:
(2)已知實(shí)數(shù)時(shí),求證:函數(shù)的圖象與直線:有3個(gè)交點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com