某食品廠為了檢查甲乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨即在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量值落在的產(chǎn)品為合格品,否則為不合格品.表1是甲流水線樣本頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.

表1:(甲流水線樣本頻數(shù)分布表)  圖1:(乙流水線樣本頻率分布直方圖) 
(1)根據(jù)上表數(shù)據(jù)在答題卡上作出甲流水線樣本的頻率分布直方圖;
(2)若以頻率作為概率,試估計(jì)從兩條流水線分別任。奔a(chǎn)品,該產(chǎn)品恰好是合格品的概率分別是多少;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答有多大的把握認(rèn)為“產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān)”.
 
甲流水線
 乙流水線
 合計(jì)
合格品


 
不合格品


 
合 計(jì)
 
 

附:下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (參考公式:,其中)
(1)
(2)甲樣本合格品的頻率為
乙樣本合格品的頻率為,
(3)90%的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān)

試題分析:(1)甲流水線樣本的頻率分布直方圖如下:

6分
(2)由表1知甲樣本中合格品數(shù)為,由圖1知乙樣本中合格品數(shù)為
,故甲樣本合格品的頻率為
乙樣本合格品的頻率為,
據(jù)此可估計(jì)從甲流水線任。奔a(chǎn)品,該產(chǎn)品恰好是合格品的概率為
從乙流水線任。奔a(chǎn)品,該產(chǎn)品恰好是合格品的概率為.         8分
(3)列聯(lián)表如下:
 
甲流水線
 乙流水線
 合計(jì)
合格品
30
36
66
不合格品
10
4
14
合 計(jì)
40
40
80
   12分

∴有90%的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān).      14分
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)直方圖的概念和獨(dú)立性檢驗(yàn)的公式來得到,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

)袋中裝有大小相同的黑球、白球和紅球共10個(gè)。已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
(1)求袋中各色球的個(gè)數(shù);
(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ和方差Dξ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的一元二次方程x2-2(a-2)xb2+16=0.
(1)若a,b是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;
(2)若a∈[2,6],b∈[0,4],求方程沒有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)隨機(jī)變量X的分布列P(=1,2,3,4,5).
(1)求常數(shù)的值;
(2)求P;
(3)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

春節(jié)期間,某商場(chǎng)決定從3種服裝、2種家電、3種日用品中,選出3種商品進(jìn)行促銷活動(dòng)。
⑴試求選出的3種商品中至少有一種是家電的概率;
⑵商場(chǎng)對(duì)選出的某商品采用抽獎(jiǎng)方式進(jìn)行促銷,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高100元,規(guī)定購(gòu)買該商品的顧客有3次抽獎(jiǎng)的機(jī)會(huì):若中一次獎(jiǎng),則獲得數(shù)額為元的獎(jiǎng)金;若中兩次獎(jiǎng),則共獲得數(shù)額為元的獎(jiǎng)金;若中3次獎(jiǎng),則共獲得數(shù)額為元的獎(jiǎng)金。假設(shè)顧客每次抽獎(jiǎng)中獲的概率都是,請(qǐng)問:商場(chǎng)將獎(jiǎng)金數(shù)額m最高定為多少元,才能使促銷方案對(duì)商場(chǎng)有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為提高學(xué)生的素質(zhì),學(xué)校決定開設(shè)一批選修課程,分別為“文學(xué)”、“藝術(shù)”、“競(jìng)賽”三類,這三類課程所含科目的個(gè)數(shù)分別占總數(shù)的,現(xiàn)有3名學(xué)生從中任選一個(gè)科目參加學(xué)習(xí)(互不影響),記為3人中選擇的科目屬于“文學(xué)”或“競(jìng)賽”的人數(shù),求的分布列及期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購(gòu)買”字樣,購(gòu)買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為.甲、乙、丙三位同學(xué)每人購(gòu)買了一瓶該飲料.
(1)求甲中獎(jiǎng)且乙、丙都沒有中獎(jiǎng)的概率;
(2)求中獎(jiǎng)人數(shù)ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

口袋中有大小、質(zhì)地均相同的7個(gè)球,3個(gè)紅球,4個(gè)黑球,現(xiàn)在從中任取3個(gè)球。
(1)求取出的球顏色相同的概率;
(2)若取出的紅球數(shù)設(shè)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)
某俱樂部舉行迎圣誕活動(dòng),每位會(huì)員交50元活動(dòng)費(fèi),可享受20元的消費(fèi),并參加一次游戲:擲兩顆正方體骰子,點(diǎn)數(shù)之和為12點(diǎn)獲一等獎(jiǎng),獎(jiǎng)價(jià)值為a元的獎(jiǎng)品;點(diǎn)數(shù)之和為11或10點(diǎn)獲二等獎(jiǎng),獎(jiǎng)價(jià)值為100元的獎(jiǎng)品;點(diǎn)數(shù)之和為9或8點(diǎn)獲三等獎(jiǎng),獎(jiǎng)價(jià)值為30元的獎(jiǎng)品;點(diǎn)數(shù)之和小于8點(diǎn)的不得獎(jiǎng)。求:
(1)同行的兩位會(huì)員中一人獲一等獎(jiǎng)、一人獲二等獎(jiǎng)的概率;
(2)如該俱樂部在游戲環(huán)節(jié)不虧也不贏利,求a的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案