【題目】已知函數(shù) .
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù) ,若在[1,e]上至少存在一點(diǎn)x0 , 使得f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)當(dāng)a=1時(shí),函數(shù) ,
∴f(1)=1﹣1﹣ln1=0. ,
曲線f(x)在點(diǎn)(1,f(1))處的切線的斜率為f'(1)=1+1﹣1=1.
從而曲線f(x)在點(diǎn)(1,f(1))處的切線方程為y﹣0=x﹣1,
即y=x﹣1.
(Ⅱ) .
要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需f′(x)≥0在(0,+∞)內(nèi)恒成立.
即:ax2﹣x+a≥0得: 恒成立.
由于 ,
∴ ,
∴
∴f(x)在(0,+∞)內(nèi)為增函數(shù),實(shí)數(shù)a的取值范圍是 .
(III)∵ 在[1,e]上是減函數(shù)
∴x=e時(shí),g(x)min=1,x=1時(shí),g(x)max=e,即g(x)∈[1,e]
f'(x)= 令h(x)=ax2﹣x+a
當(dāng) 時(shí),由(II)知f(x)在[1,e]上是增函數(shù),f(1)=0<1
又 在[1,e]上是減函數(shù),故只需f(x)max≥g(x)min,x∈[1,e]
而f(x)max=f(e)= ,g(x)min=1,即)= ≥1
解得a≥
∴實(shí)數(shù)a的取值范圍是[ ,+∞)
【解析】(Ⅰ)當(dāng)a=1時(shí),求出切點(diǎn)坐標(biāo),然后求出f'(x),從而求出f(1)的值即為切線的斜率,利用點(diǎn)斜式可求出切線方程;(Ⅱ)先求導(dǎo)函數(shù),要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需f′(x)≥0在(0,+∞)內(nèi)恒成立,然后將a分離,利用基本不等式可求出a的取值范圍;(III)根據(jù)g(x)在[1,e]上的單調(diào)性求出其值域,然后根據(jù)(II)可求出f(x)的最大值,要使在[1,e]上至少存在一點(diǎn)x0,使得f(x0)≥g(x0)成立,只需f(x)max≥g(x)min,x∈[1,e],然后建立不等式,解之即可求出a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),( )是偶函數(shù).
(1)求的值;
(2)設(shè)函數(shù),其中.若函數(shù)與的圖象有且只有一個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax2﹣bx(a,b∈R),g(x)= ﹣lnx.
(1)當(dāng)a=﹣1時(shí),f(x)與g(x)在定義域上的單調(diào)性相反,求b的取值范圍;
(2)當(dāng)a,b都為0時(shí),斜率為k的直線與曲線y=f(x)交A(x1 , y1),B(x2 , y2)(x1<x2)于兩點(diǎn),求證:x1< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xex+ax2+2x+1在x=﹣1處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)﹣m﹣1在[﹣2,2]上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為= (直接寫出結(jié)果即可);
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線l1:y=x+a和l2:y=x+b將圓(x﹣1)2+(y﹣2)2=8分成長(zhǎng)度相同的四段弧,則ab= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 =1(a>b>0)右頂點(diǎn)與右焦點(diǎn)的距離為 ﹣1,短軸長(zhǎng)為2 . (Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)左焦點(diǎn)F的直線與橢圓分別交于A、B兩點(diǎn),若△OAB(O為直角坐標(biāo)原點(diǎn))的面積為 ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,⊙O和⊙O′相交于A,B兩點(diǎn),過(guò)A作兩圓的切線分別交兩圓于C、D兩點(diǎn),連接DB并延長(zhǎng)交⊙O于點(diǎn)E.證明:
(1)ACBD=ADAB;
(2)AC=AE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com