過雙曲線的左焦點(diǎn)作圓的切線,切點(diǎn)為,延長交拋物線于點(diǎn),若為線段的中點(diǎn),則雙曲線的離心率為( )
A. | B. | C. | D. |
D
解析試題分析:解:設(shè)雙曲線的右焦點(diǎn)為F',則F'的坐標(biāo)為(c,0)
因?yàn)閽佄锞為y2=4cx,所以F'為拋物線的焦點(diǎn)
因?yàn)镺為FF'的中點(diǎn),E為FP的中點(diǎn),所以O(shè)E為△PFF'的中位線,
屬于OE∥PF'因?yàn)閨OE|=a,所以|PF'|=2a
又PF'⊥PF,|FF'|="2c" 所以|PF|="2b"
設(shè)P(x,y),則由拋物線的定義可得x+c=2a,
∴x="2a-c" ,過點(diǎn)F作x軸的垂線,點(diǎn)P到該垂線的距離為2a
由勾股定理 y2+4a2=4b2,即4c(2a-c)+4a2=4(c2-a2)
得e2-e-1=0,e=,選D.
考點(diǎn):本試題主要考查了雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,考查拋物線的定義,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.
點(diǎn)評(píng):解決該試題的關(guān)鍵是雙曲線的右焦點(diǎn)的坐標(biāo)為(c,0),利用O為FF'的中點(diǎn),E為FP的中點(diǎn),可得OE為△PFF'的中位線,從而可求|PF|,再設(shè)P(x,y) 過點(diǎn)F作x軸的垂線,由勾股定理得出關(guān)于a,c的關(guān)系式,最后即可求得離心率
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知、分別是雙曲線的左、右焦點(diǎn),以坐標(biāo)原點(diǎn) 為圓心,為半徑的圓與雙曲線在第一象限的交點(diǎn)為,則當(dāng)的面積等于時(shí),雙曲線的離心率為( )
A. | B. | C. | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,且長軸長為,離心率為,則橢圓的方程是( )
A.+=1 | B.+=1 | C.+=1 | D.+=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
連接拋物線的焦點(diǎn)與點(diǎn)所得的線段與拋物線交于點(diǎn),設(shè)點(diǎn)為坐標(biāo)原點(diǎn),則三角形的面積為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
一圓形紙片的圓心為點(diǎn),點(diǎn)是圓內(nèi)異于點(diǎn)的一定點(diǎn),點(diǎn)是圓周上一點(diǎn).把紙片折疊使點(diǎn)與重合,然后展平紙片,折痕與交于點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)時(shí)點(diǎn)的軌跡是( )
A.橢圓 | B.雙曲線 | C.拋物線 | D.圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,其上一點(diǎn)P(m,1)到焦點(diǎn)距離為5,則拋物線方程為 ( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com