【題目】已知函數(shù) .
(1)當 時,討論 的極值情況;
(2)若 ,求 的值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)求導,因為得或,討論兩根的大小,得出各種情況下的極值(2) 令,得,分類討論(1)中的情況,從而得出結果
解析:(1)
.
因為,由得,或.
①當時,,單調遞增,故無極值.
②當時,.,,的關系如下表:
+ | 0 | - | 0 | + | |
單調遞增 | 極大值 | 單調遞減 | 極小值 | 單調遞增 |
故有極大值,極小值.
③當時,.,,的關系如下表:
+ | 0 | - | 0 | + | |
單調遞增 | 極大值 | 單調遞減 | 極小值 | 單調遞增 |
故有極大值,極小值.
綜上:當時,有極大值,極小值;
當時,無極值;
當時,有極大值,極小值.
(2)令,則.
(i)當時,,
所以當時,,單調遞減,
所以,此時,不滿足題意.
(ii)由于與有相同的單調性,因此,由(Ⅰ)知:
①當時,在上單調遞增,又,
所以當時,;當時,.
故當時,恒有,滿足題意.
②當時,在單調遞減,
所以當時,,
此時,不滿足題意.
③當時,在單調遞減,
所以當時,,
此時,不滿足題意.
綜上所述:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,平面,點在以為直徑的上,,,點為線段的中點,點在弧上,且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)設二面角的大小為,求的值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】試題分析:
(1)由△ABC中位線的性質可得,則平面.由線面平行的判斷定理可得平面.結合面面平行的判斷定理可得平面.
(2)由圓的性質可得,由線面垂直的性質可得,據(jù)此可知平面.利用面面垂直的判斷定理可得平面平面.
(3)以為坐標原點,所在的直線為軸,所在的直線為軸,建立空間直角坐標系.結合空間幾何關系計算可得平面的法向量,平面的一個法向量,則.由圖可知為銳角,故.
試題解析:
(1)證明:因為點為線段的中點,點為線段的中點,
所以,因為平面,平面,所以平面.
因為,且平面,平面,所以平面.
因為平面,平面,,
所以平面平面.
(2)證明:因為點在以為直徑的上,所以,即.
因為平面,平面,所以.
因為平面,平面,,所以平面.
因為平面,所以平面平面.
(3)解:如圖,以為坐標原點,所在的直線為軸,所在的直線為軸,建立空間直角坐標系.
因為,,所以,.
延長交于點.因為,
所以,,.
所以,,,.
所以,.
設平面的法向量.
因為,所以,即.
令,則,.
所以.
同理可求平面的一個法向量.
所以.由圖可知為銳角,所以.
【題型】解答題
【結束】
21
【題目】已知圓,點,直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標原點),存在定點(不同于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C: 的左、右焦點分別為F1、F2,離心率為,直線y=1與C的兩個交點間的距離為
(1)求圓C的方程;
(2)如圖,過F1、F2作兩條平行線l1、l2與C的上半部分分別交于A、B兩點,求四邊形ABF2F1面積的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是偶函數(shù),且,.
(1)當時,求函數(shù)的值域;
(2)設R,求函數(shù)的最小值;
(3)對(2)中的,若不等式對于任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,直線的斜率為,直線的斜率為,且.
(1)求點的軌跡的方程;
(2)設,,連接并延長,與軌跡交于另一點,點是中點,是坐標原點,記與的面積之和為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為偶函數(shù),求實數(shù)的值;
(2)若,求函數(shù)的單調遞減區(qū)間;
(3)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調遞增區(qū)間;
(2)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調函數(shù);②函數(shù)的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.(1)寫出函數(shù)的一個“保值”區(qū)間為_____________;(2)若函數(shù)存在“保值”區(qū)間,則實數(shù)的取值范圍為_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com