【題目】已知數(shù)列{an}滿足條件(n﹣1)an+1=(n+1)(an﹣1),且a2=6,
(1)計算a1、a3、a4 , 請猜測數(shù)列{an}的通項(xiàng)公式并用數(shù)學(xué)歸納法證明;
(2)設(shè)bn=an+n(n∈N*),求 的值.
【答案】
(1)解:當(dāng)n=1時,a1=1,且a2=6
當(dāng)n=2時,a3=3(a2﹣1)=15,
當(dāng)n=3時,2a4=4(a3﹣1),∴a4=28,
猜測
下面用數(shù)學(xué)歸納法證明:
ⅰ當(dāng)n=1,2,3,4時,等式 已成立
ⅱ假設(shè)當(dāng)n=k時,
則由(k﹣1)ak+1=(k+1)(ak﹣1),有: =2k2+3k+1=2(k+1)2﹣(k+1)
即n=k+1時,等式也成立
綜上, 成立
(2)解:bn=an+n=2n2
∴bn﹣2=2(n﹣1)(n+1)
∴ = ( )
∴ =
= =
【解析】(1)計算前幾項(xiàng),猜想數(shù)列的通項(xiàng),再利用數(shù)學(xué)歸納法進(jìn)行證明;(2)確定數(shù)列的通項(xiàng),利用裂項(xiàng)法求和,即可求得結(jié)論.
【考點(diǎn)精析】利用數(shù)學(xué)歸納法的定義對題目進(jìn)行判斷即可得到答案,需要熟知數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線.(1)求曲線的普通方程;(2)若點(diǎn)在曲線上,點(diǎn) ,當(dāng)點(diǎn)在曲線上運(yùn)動時,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c且b=c,∠A的平分線為AD,若 =m .
(1)當(dāng)m=2時,求cosA
(2)當(dāng) ∈(1, )時,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)為正的數(shù)列{an}是等比數(shù)列,a1=2,a5=32,數(shù)列{bn}滿足:對于任意n∈N* , 有a1b1+a2b2+…+anbn=(n﹣1)2n+1+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令f(n)=a2+a4+…+a2n , 求 的值;
(3)求數(shù)列{bn}通項(xiàng)公式,若在數(shù)列{an}的任意相鄰兩項(xiàng)ak與ak+1之間插入bk(k∈N*)后,得到一個新的數(shù)列{cn},求數(shù)列{cn}的前100項(xiàng)之和T100 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于兩個定義域相同的函數(shù)f(x),g(x),若存在實(shí)數(shù)m、n使h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1由函數(shù)f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1”生成一個函數(shù)h(x),使之滿足下列件:①是偶函數(shù);②有最小值1;求函數(shù)h(x)的解析式并進(jìn)一步研究該函數(shù)的單調(diào)性(無需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意的實(shí)數(shù)滿足:f(x+3)=﹣ ,且當(dāng)﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當(dāng)﹣1≤x<3時,f(x)=x.則f(1)+f(2)+f(3)+…+f(2016)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)A是單位圓和x軸正半軸的交點(diǎn),P,Q是單位圓上兩點(diǎn),O是坐標(biāo)原點(diǎn),且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點(diǎn)Q的坐標(biāo)是 ,求 的值;
(Ⅱ)設(shè)函數(shù) ,求f(α)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD滿足AD∥BC,BA=AD=DC= BC=a,E是BC的中點(diǎn),將△BAE沿著AE翻折成△B1AE,使面B1AE⊥面AECD,F(xiàn),G分別為B1D,AE的中點(diǎn).
(1)求三棱錐E﹣ACB1的體積;
(2)證明:B1E∥平面ACF;
(3)證明:平面B1GD⊥平面B1DC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對任意 恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com