【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加 班級(jí)工作 | 不太主動(dòng)參加 班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系?并說明理由.(參考下表)
P(K2 ≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
【答案】(1),;(2)能有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系
【解析】
(1)先把基本事件的總數(shù)與滿足要求的個(gè)數(shù)找出來,代入古典概率的計(jì)算公式即可;
(2)由題中的數(shù)據(jù)直接計(jì)算與臨界值比較即可.
解:(1)由題意可知,積極參加班級(jí)工作的學(xué)生有24人,總?cè)藬?shù)50人,所以隨機(jī)抽查這個(gè)班的一名學(xué)生,抽到積極參加班級(jí)工作的學(xué)生的概率為;
不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生有19人,所以抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率為;
(2)由題中的數(shù)據(jù)可得,
所以能有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù),).
(1)求直線的直角坐標(biāo)方程及曲線的普通方程;
(2)直線和曲線相交于點(diǎn),,設(shè)相交弦的長度為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,卷一《方田》中有如下兩個(gè)問題:
[三三]今有宛田,下周三十步,徑十六步.問為田幾何?
[三四]又有宛田,下周九十九步,徑五十一步.問為田幾何?
翻譯為:[三三]現(xiàn)有扇形田,弧長30步,直徑長16步.問這塊田面積是多少?
[三四]又有一扇形田,弧長99步,直徑長51步.問這塊田面積是多少?
則下列說法正確的是( )
A.問題[三三]中扇形的面積為240平方步B.問題[三四]中扇形的面積為平方步
C.問題[三三]中扇形的面積為60平方步D.問題[三四]中扇形的面積為平方步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ) 求曲線在點(diǎn)處的切線方程;
(Ⅱ) 討論函數(shù)的單調(diào)性;
(Ⅲ) 設(shè),當(dāng)時(shí),若對(duì)任意的,存在,使得≥,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
(Ⅰ)求證:PO平面;
(Ⅱ)求平面EFG與平面所成銳二面角的大。
(Ⅲ)線段上是否存在點(diǎn),使得直線與平面所成角為,若存在,求線段的長度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:和直線:,是的焦點(diǎn),是上一點(diǎn),過作拋物線的一條切線與軸交于,則外接圓面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)對(duì)于任意,,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為(其中為自然對(duì)數(shù)的底數(shù)),是的導(dǎo)函數(shù)。
(1)求的值;
(2)任取兩個(gè)不等的正數(shù),且,若存在正數(shù),使得成立。求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的短軸長為,離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)M,N分別為橢圓C的左、右頂點(diǎn),過點(diǎn)且不與x軸重合的直線與橢圓C相交于A,B兩點(diǎn)是否存在實(shí)數(shù)t(),使得直線:與直線的交點(diǎn)P滿足P,A,M三點(diǎn)共線?若存在,求出的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com