設(shè)f(x)為周期是2的奇函數(shù),當(dāng)時(shí),f(x)=x(x+1),則當(dāng)時(shí),f(x)的表達(dá)式為
A.(x-5)(x-4) | B.(x-6)(x-5) | C.(x-6)(5-x) | D.(x-6)(7-x) |
D
解析試題分析:利用函數(shù)是奇函數(shù),可由x∈(0,1)時(shí)的解析式求x∈(-1,0)時(shí)的解析式,利用周期性求得x∈(5,6)時(shí),f(x)表達(dá)式.
解:因?yàn)閤∈(0,1)時(shí),f(x)=x(x+1),
設(shè)x∈(-1,0)時(shí),-x∈(0,1),
∴f(-x)=-x(-x+1),
∵f(x)為定義在R上的奇函數(shù)
∴f(x)=-f(-x)=x(-x+1),
∴當(dāng)x∈(-1,0)時(shí),f(x)=x(-x+1),
所以x∈(5,6)時(shí),x-6∈(-1,0),
∵f(x)為周期是2的函數(shù),
∴f(x)=f(x-6)=(x-6)(6-x+1)=(x-6)(7-x),
故選D
考點(diǎn):抽象函數(shù)的運(yùn)用
點(diǎn)評:本題綜合考查函數(shù)奇偶性與周期性知識的運(yùn)用,把要求區(qū)間上的問題轉(zhuǎn)化到已知區(qū)間上求解,是解題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想方法.屬中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)是( )
A.奇函數(shù),在(0,+∞)上是減函數(shù) | B.偶函數(shù),在(0,+∞)上是減函數(shù) |
C.奇函數(shù),在(0,+∞)上是增函數(shù) | D.偶函數(shù),在(0,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
下面有四個(gè)結(jié)論:①偶函數(shù)的圖像一定與軸相交。②奇函數(shù)的圖像不一定過原點(diǎn)。③偶函數(shù)若在上是減函數(shù),則在上一定是增函數(shù)。④有且只有一個(gè)函數(shù)既是奇函數(shù)又是偶函數(shù)。其中正確結(jié)論的個(gè)數(shù)是( )
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知a=lg3+lg,b=lg9,c=lg2,則a,b,c的大小關(guān)系是
A.b<a<c | B.c<a<b | C.a(chǎn)<b<c | D.c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
將函數(shù)的圖像先向左平移2個(gè)單位,在向下平移3 個(gè)單位后對應(yīng)的解析式是( )
A. | B. |
C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com