【題目】已知函數(shù),其中,.
(1)函數(shù)的圖象能否與x軸相切?若能,求出實(shí)數(shù)a;若不能,請(qǐng)說明理由.
(2)若在處取得極大值,求實(shí)數(shù)a的取值范圍.
【答案】(1) 答案見解析(2)
【解析】
(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.
(1)函數(shù)的圖象不能與x軸相切,理由若下:
.假設(shè)函數(shù)的圖象與x軸相切于
則即
顯然,,代入中得,無實(shí)數(shù)解.
故函數(shù)的圖象不能與x軸相切.
(2)()
,,
設(shè)(),
恒大于零.
在上單調(diào)遞增.
又,,,
∴存在唯一,使,且
時(shí),時(shí),
①當(dāng)時(shí),恒成立,在單調(diào)遞增,
無極值,不合題意.
②當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.
所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,
所以在處取得極小值,不合題意.
③當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.
所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,
所以在處取得極大值,符合題意.
此時(shí)由得即,
綜上可知,實(shí)數(shù)a的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊、貼春聯(lián)、掛燈籠等方式來表達(dá)對(duì)新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動(dòng),顧客凡購物金額滿50元,則可以從“!弊、春聯(lián)和燈籠這三類禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類相同的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中,為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的最小值;
(2)若對(duì)于任意的,都存在唯一的,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)A是直線上的動(dòng)點(diǎn),過作直線,,線段的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)若點(diǎn),是直線上兩個(gè)不同的點(diǎn),且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),若在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)若在,處取得極值,且方程在上有唯一解時(shí),的取值范圍為或,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線與直線垂直,求的極值;
(2)若函數(shù)的圖象恒在直線的下方.
①求實(shí)數(shù)的取值范圍;
②求證:對(duì)任意正整數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016里約奧運(yùn)會(huì)期間,小趙常看的4個(gè)電視頻道中有2個(gè)頻道在轉(zhuǎn)播奧運(yùn)比賽,若小趙這時(shí)打開電視,隨機(jī)打開其中兩個(gè)頻道試看,那么,小趙所看到的第一個(gè)電視臺(tái)恰好沒有轉(zhuǎn)播奧運(yùn)比賽,而第二個(gè)電視臺(tái)恰好在轉(zhuǎn)播奧運(yùn)比賽的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,則x1+x2的取值范圍為
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 5 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)的解析式;
(2)將圖象上所有點(diǎn)向左平行移動(dòng)個(gè)單位長度,并把圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的(縱坐標(biāo)不變),得到的圖象.若圖象的一個(gè)對(duì)稱中心為,求的最小值;
(3)在(2)條件下,求在上的增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com