分析:根據(jù)題目給出的角α和β的范圍,求出45°-α和135°+β的范圍,然后根據(jù)給出cos(45°-α)與sin(135°+β)的值求出對應(yīng)的異名三角函數(shù)值,把要求的sin(α+β)和cos(α-β)拆配成sin(α+β)=-cos[(135°+β)-(45°-α)]和sin(α+β)=-cos[(135°+β)-(45°-α)]求解.
解答:解∵0°<β<45°<α<135°,
∴-90°<45°-α<0°,135°<135+β<180°
∵
cos(45°-α)=,∴
sin(45°-α)=-,
∵
sin(135°+β)=,∴
cos(135°+β)=-∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=
-[(-)+(-)]=cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-
[(-)-(-)]=
點(diǎn)評:本題考查了兩角和與差的正余弦函數(shù),訓(xùn)練了三角函數(shù)求值的拆配角方法,解答此題的關(guān)鍵是如何正確把要求三角函數(shù)值的角拆配成已知三角函數(shù)值的角,解答時(shí)一定要注意角的范圍.