【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機(jī)抽取了100名
觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應(yīng)的人數(shù)表:

場數(shù)

9

10

11

12

13

14

人數(shù)

10

18

22

25

20

5

將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?

非歌迷

歌迷

合計(jì)

合計(jì)

(Ⅱ)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.

0.05

0.01

3.841

6.635

參考公式與數(shù)據(jù): ,其中

【答案】(Ⅰ)表格如解析所示,我們沒有95%的把握認(rèn)為“歌迷”與性別有關(guān);(Ⅱ)

【解析】試題分析:(1)先將數(shù)據(jù)對應(yīng)填入表格,代入卡方公式計(jì)算3.030,再與參考數(shù)據(jù)比較,確定可能性(2)因?yàn)椤俺壐杳浴庇?人,任意選取2人共有10種基本事件(利用枚舉法),其中至少有1個是女性的事件有7種,最后利用古典概型概率公式求概率.

試題解析:(Ⅰ)由統(tǒng)計(jì)表可知,在抽取的100人中,“歌迷”有25人,從而完成2×2列聯(lián)表如下:

非歌迷

歌迷

合計(jì)

30

15

45

45

10

55

合計(jì)

75

25

100

將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得:

K2==≈3.030

因?yàn)?.030<3.841,所以我們沒有95%的把握認(rèn)為“歌迷”與性別有關(guān).

(Ⅱ)由統(tǒng)計(jì)表可知,“超級歌迷”有5人,從而一切可能結(jié)果所組成的基本事件空間為Ω={(a1 , a2),(a1 , a3),(a2 , a3),(a1 , b1),(a1 , b2),(a2 , b1),(a2 , b2),(a3 , b1),(a3 , b2),(b1 , b2)}其中ai表示男性,i=1,2,3,bi表示女性,i=1,2.

Ω由10個等可能的基本事件組成.

用A表示“任選2人中,至少有1個是女性”這一事件,則A={(a1 , b1),(a1 , b2),(a2 , b1),(a2 , b2),(a3 , b1),(a3 , b2),(b1 , b2) },事件A由7個基本事件組成.

∴P(A)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱中,側(cè)棱, , 分別為棱的中點(diǎn), 分別為線段的中點(diǎn).

(1)求證:直線平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是(﹣∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x<0時,函數(shù)的部分圖象如圖所示,則不等式xf(x)<0的解集是(

A.(﹣2,﹣1)∪(1,2)
B.(﹣2,﹣1)∪(0,1)∪(2,+∞)
C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)五邊形中,

,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.

(1)求證:平面平面;

(2)若四棱柱的體積為,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選課意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果如下.

圖中,課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡稱“組”).

(Ⅰ)在“組”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)某地舉辦自然科學(xué)營活動,學(xué)校要求:參加活動的學(xué)生只能是“組”中選擇

程或課程的同學(xué),并且這些同學(xué)以自愿報名繳費(fèi)的方式參加活動. 選擇課程的學(xué)生中有人參加科學(xué)營活動,每人需繳納元,選擇課程的學(xué)生中有人參加該活動,每人需繳納元.記選擇課程和課程的學(xué)生自愿報名人數(shù)的情況為,參加活動的學(xué)生繳納費(fèi)用總和為元.

①當(dāng)時,寫出的所有可能取值;

②若選擇課程的同學(xué)都參加科學(xué)營活動,求元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求函數(shù)f(x)的單調(diào)區(qū)間,
(2)當(dāng)x∈(0, ]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為為直徑的圓O過橢圓E的上頂點(diǎn)D,直線DB與圓O相交得到的弦長為.設(shè)點(diǎn),連接PA交橢圓于點(diǎn)C.

(I)求橢圓E的方程;

(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:
①“等邊三角形的三個內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x﹣k=0有實(shí)根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若 = ,則 ”的否命題,
其中真命題的個數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}首項(xiàng)a1=1,公差為d,且數(shù)列 是公比為4的等比數(shù)列,
(1)求d;
(2)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn
(3)求數(shù)列 的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案