設函數(shù)f (x)=2cosx (cosx+sinx)-1, xR
(1)求f (x)的最小正周期T及單調(diào)遞增區(qū)間;
(2)在中,,求f (A)的取值范圍.
(1),單調(diào)增區(qū)間為;(2).
第一問首先化為單一三角函數(shù)=,然后利用周期公式和正弦函數(shù)的單調(diào)區(qū)間求解得到。由 得
第二問中,由已知得,因此得到
即為所求。
解:

     。……………3分
(1)      T=……………………4分
 得

故函數(shù)的單調(diào)增區(qū)間為………7分
(2)    由已知得,

……………………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量設函數(shù); 
(1)寫出函數(shù)的單調(diào)遞增區(qū)間;
(2)若x求函數(shù)的最值及對應的x的值;
(3)若不等式在x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)的三個內(nèi)角依次成等差數(shù)列.
(Ⅰ)若,試判斷的形狀;
(Ⅱ)若為鈍角三角形,且,求
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=sin(wx+j)(xÎR,w>0,0≤j<2p)的部分圖象如右圖,則 (       )
A.w=,j=B.w=,j=
C.w=,j=D.w=,j=
            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。求函數(shù)的單調(diào)遞增區(qū)間和最小值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在區(qū)間的簡圖是(    。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) 的圖象的兩相鄰對稱軸間的距離為.
(1)求值;(2)若是第四象限角,,求 的值
(2)若,且有且僅有一個實根,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

把函數(shù)的圖像上每一點的橫坐標伸長到原來的2倍,縱坐標不變,然后再向左平移個單位后得到一個最小正周期為2的奇函數(shù).
(1) 求的值;
(2)的單調(diào)區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

 如圖,函數(shù)的部分圖象, 則     
函數(shù)的一個解析式為 (   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案