為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取12件和5件,測(cè)量產(chǎn)品中微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):

編號(hào)
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
76
81
  (1)已知甲廠生產(chǎn)的產(chǎn)品共84件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175且y≥75,該產(chǎn)品為優(yōu)等品,
①用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
②從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其期望.

(I)35 ;(II)①21件; ②所以隨機(jī)變量的分布列為


0
1
2




.

解析試題分析:(I)根據(jù)分層抽樣的特點(diǎn):每層按比例抽樣,即各層樣本數(shù)與該層總體數(shù)的比值相等,可得到乙廠產(chǎn)品數(shù)量.(II)①,根據(jù)列表統(tǒng)計(jì)優(yōu)等品的頻數(shù),根據(jù)頻數(shù)與容量之比=頻率,易知乙廠優(yōu)等品數(shù)量21件。②根據(jù)簡(jiǎn)單隨機(jī)抽樣中隨機(jī)變量的分布,確定的可能取值情況,再列出隨機(jī)變量的分布列易求均值.
試題解析:(I)設(shè)乙廠生產(chǎn)的產(chǎn)品數(shù)量為x件,由題意得,所以;
(II)①由題意知乙廠生產(chǎn)的優(yōu)等品的數(shù)量為件;②由題意知乙廠抽取的5件產(chǎn)品中共有3件優(yōu)等品,隨機(jī)抽取兩件,易知隨機(jī)變量,,,,所以隨機(jī)變量的分布列為


0
1
2




 
所以隨機(jī)變量的期望 .
考點(diǎn):1、分層抽樣的性質(zhì)和公式  2、簡(jiǎn)單隨機(jī)變量的分布列及均值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

小波以游戲方式?jīng)Q定參加學(xué)校合唱團(tuán)還是參加學(xué)校排球隊(duì).游戲規(guī)則為:以O(shè)為起點(diǎn),再?gòu)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/4/8kvm12.png" style="vertical-align:middle;" />(如圖)這8個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為.若就參加學(xué)校合唱團(tuán),否則就參加學(xué)校排球隊(duì).

(I)求小波參加學(xué)校合唱團(tuán)的概率;
(II)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.
(1)求甲以4比1獲勝的概率;
(2)求乙獲勝且比賽局?jǐn)?shù)多于5局的概率;
(3)求比賽局?jǐn)?shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某大學(xué)一個(gè)專業(yè)團(tuán)隊(duì)為某專業(yè)大學(xué)生研究了多款學(xué)習(xí)軟件,其中有A、B、C三種軟件投入使用,經(jīng)一學(xué)年使用后,團(tuán)隊(duì)調(diào)查了這個(gè)專業(yè)大一四個(gè)班的使用情況,從各班抽取的樣本人數(shù)如下表

班級(jí)




人數(shù)
3
2
3
4
(1)從這12人中隨機(jī)抽取2人,求這2人恰好來(lái)自同一班級(jí)的概率.
(2)從這12名學(xué)生中,指定甲、乙、丙三人為代表,已知他們下午自習(xí)時(shí)間每人選擇A、B兩個(gè)軟件學(xué)習(xí)的概率每個(gè)都是,且他們選擇A、B、C任一款軟件都是相互獨(dú)立的.設(shè)這三名學(xué)生中下午自習(xí)時(shí)間選軟件C的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某校在一次考試中,5名學(xué)生的數(shù)學(xué)和物理成績(jī)?nèi)缦卤恚?br />

學(xué)生的編號(hào)i
1
2
3
4
5
數(shù)學(xué)成績(jī)x
80
75
70
65
60
物理成績(jī)y
70
66
68
64
62
(Ⅰ)若在本次考試中,規(guī)定數(shù)學(xué)成績(jī)?cè)?0以上(包括70分)且物理成績(jī)?cè)?5分以上(包括65分)的為優(yōu)秀. 計(jì)算這五名同學(xué)的優(yōu)秀率;
(Ⅱ)根據(jù)上表,利用最小二乘法,求出關(guān)于的線性回歸方程
其中
(III)利用(Ⅱ)中的線性回歸方程,試估計(jì)數(shù)學(xué)90分的同學(xué)的物理成績(jī).(四舍五入到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了調(diào)査某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)lOO名男生和100名女生進(jìn)行了不記名的問(wèn)卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:
表l:男生上網(wǎng)時(shí)間與頻數(shù)分布表

表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表

(I)從這100名男生中任意選出3人,其中恰有1人上網(wǎng)時(shí)間少于60分鐘的概率;
(II)完成下面的2X2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?
表3:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

今年我國(guó)部分省市出現(xiàn)了人感染H7N9禽流感確診病例,各地家禽市場(chǎng)受其影響生意冷清.A市雖未發(fā)現(xiàn)H7N9疑似病例,但經(jīng)抽樣有20%的市民表示還會(huì)購(gòu)買本地家禽.現(xiàn)將頻率視為概率,解決下列問(wèn)題:
(Ⅰ)從該市市民中隨機(jī)抽取3位,求至少有一位市民還會(huì)購(gòu)買本地家禽的概率;
(Ⅱ)從該市市民中隨機(jī)抽取位,若連續(xù)抽取到兩位愿意購(gòu)買本地家禽的市民,或抽取的人數(shù)達(dá)到4位,則停止抽取,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩人進(jìn)行圍棋比賽,規(guī)定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一方比對(duì)方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為.
(Ⅰ)求的值;
(Ⅱ)設(shè)表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a, b.
(1)求直線ax+by+5=0與圓 相切的概率;
(2)將a,b,5的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案