【題目】已知點,點,圓

(1)求過點的圓的切線方程;

(2)求過點的圓的切線方程.

【答案】(1);(2

【解析】

由圓的方程可得圓心坐標和半徑;

1)驗證可知在圓上,利用兩點連線斜率公式可得;根據(jù)垂直關系可求得切線斜率,由直線點斜式可求得切線方程,整理可得結果;

2)驗證可知在圓外;當過的直線斜率不存在時,易知是圓切線;當過的直線斜率存在時,假設直線方程,利用圓心到直線距離等于半徑可構造方程求得切線斜率,代入整理可得結果.

由題意得:圓心,半徑

1 在圓

切線的斜率

過點的圓的切線方程為,即

(2) 在圓外部

若過點的直線斜率不存在,直線方程為,是圓的切線;

若過點的切線斜率存在,可設切線方程為:,即

圓心到切線的斜率,解得:

切線方程為,即

綜上所述:切線方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,底面,底面為等腰梯形,,,,,點E邊上的點,.

1)求證:平面;

2)若,求點E到平面的距離 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,且,,平面平面.

(1)求證:;

(2)若底面是邊長為2的菱形,四棱錐的體積為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,縱、橫坐標都是整數(shù)的點稱為整點。請設計一種方法將所有的整點染色,每一個整點染成白色、紅色或黑色中的一種顏色,使得

(1)每一種顏色的點出現(xiàn)在無窮多條平行于橫軸的直線上;

(2)對于任意白點、紅點及黑點,總可以找到一個紅點,使為一平行四邊形。證明你設計的方法符合上述要求。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設點為橢圓的右焦點,圓且斜率為的直線交圓兩點,交橢圓于點兩點,已知當時,

(1)求橢圓的方程.

(2)當時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義域為的奇函數(shù),當.

(Ⅰ)求出函數(shù)上的解析式;

(Ⅱ)在答題卷上畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;

(Ⅲ)若關于的方程有三個不同的解,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,DADC2,,EC1D1的中點,FCE的中點.

1)求證:EA∥平面BDF;

2)求證:平面BDF⊥平面BCE;

3)求二面角DEBC的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】銅陵市出租車已于今年61日起調(diào)整運價,現(xiàn)行計價標準是:路程在2.5km以內(nèi)(含2.5km)按起步價7元收取,超過2.5km后的路程按1.9km收取,但超過8km后的路程需加收50%的返空費(即單價為元).

1)將某乘客搭乘一次出租車的費用(單位:元)表示為行程x,單位:km)的分段函數(shù);

2)某乘客的行程為16km,他準備先乘一輛出租車行駛8km后,再換乘另一輛出租車完成余下行程,請問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,判斷是否為的極值點,并說明理由;

(2)記.若函數(shù)存在極大值,證明:.

查看答案和解析>>

同步練習冊答案