已知tanα>0且sinα+cosα>0,則α的終邊在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】分析:由tanα>0,可得α的終邊在第一或第三象限.再由且sinα+cosα>0,可得則α的終邊只能在第一象限.
解答:解:∵已知tanα>0,可得α的終邊在第一或第三象限.再由且sinα+cosα>0,可得則α的終邊只能在第一象限,
不能在第三象限(第三象限內(nèi),sinα<0,cosα<0),
故選A.
點評:本題主要考查三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓以坐標(biāo)原點為中心,坐標(biāo)軸為對稱軸,且橢圓以拋物線y2=16x的焦點為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點為頂點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點A(-1,0),B(1,0),且C,D分別為橢圓的上頂點和右頂點,點P是線段CD上的動點,求
AP
BP
的取值范圍.
(3)試問在圓x2+y2=a2上,是否存在一點M,使△F1MF2的面積S=b2(其中a為橢圓的半長軸長,b為橢圓的半短軸長,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點),若存在,求tan∠F1MF2的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•紹興一模)如圖,在直角三角形OAB中,P,Q是斜邊AB的兩個三等分點,已知|
OP
|=sinα
,且|
OQ
|
=cosα(0<α<
π
2
)

(1)若2sinα+cosα=
11
5
,求tanα的值;
(2)試判斷|
AB
|
是否為定值,并說明理由;
(3)求△OPQ的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點是橢圓
x2
4
+
y2
3
=1
的中心,且焦點與該橢圓右焦點重合.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若P(a,0)為x軸上一動點,過P點作直線交拋物線C于A、B兩點.
(。┰O(shè)S△AOB=t•tan∠AOB,試問:當(dāng)a為何值時,t取得最小值,并求此最小值.
(ⅱ)若a=-1,點A關(guān)于x軸的對稱點為D,證明:直線BD過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F2與拋物線y2=4x的焦點重合,過F2作與x軸垂直的直線交橢圓于S,T兩點,交拋物線于C,D兩點,且
|CD|
|ST|
=2
2

(I)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)Q(2,0),過點(-1,0)的直線l交橢圓E于M、N兩點.
(i)當(dāng)
QM
QN
=
19
3
時,求直線l的方程;
(ii)記△QMN的面積為S,若對滿足條件的任意直線l,不等式S>λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省十校聯(lián)合體2011-2012學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)理科試題 題型:044

已知點A(0,1),B(0,-1),P是一個動點,且直線PA,PB的斜率之積為

(1)求動點P的軌跡方程C;

(2)C上一動點P(x0,y0)關(guān)于直線y=2x的對稱點為P1(x1,y1),求3x1-4y1的取值范圍;

(3)設(shè)Q(2,0),過點(-1,0)的直線l交C于M,N兩點,△QMN的面積記為S,若對滿足條件的任意直線l,不等式S≤λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

同步練習(xí)冊答案