如圖,已知橢圓E:(a>b>0)的離心率為,E的左頂點為A、上頂點為B,點P在橢圓上,且△PF1F2的周長為4+2,
(Ⅰ)求橢圓的方程;
(Ⅱ)設C,D是橢圓E上兩不同點,CD∥AB,直線CD與x軸、y軸分別交于M,N兩點,且,求λ+μ的取值范圍。
解:(Ⅰ)由題意得,
所以橢圓的方程為;
(Ⅱ)又A(-2,0),B(0,1),所以,
由CD∥AB,可設直線CD的方程為
由已知得M(-2m,0),N(0,m),
設C(x1,y1),D(x2,y2),
得x2+2mx+2m2-2=0,
Δ=(2m)2-4(2m2-2)>0m2<2,
所以x1+x2=-2m,x1x2=2m2-2,
得(x1+2m,y1)=λ(-x1,m-y1),
所以x1+2m=-λx1,
同理由
所以,
,
所以λ+μ∈(-∞,-2]∪(2,+∞)。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點分別為A1、A2,上、下頂點分別為B1、B2.設直線A1B1的傾斜角的正弦值為
1
3
,圓C與以線段OA2為直徑的圓關于直線A1B1對稱.
精英家教網(wǎng)
(1)求橢圓E的離心率;
(2)判斷直線A1B1與圓C的位置關系,并說明理由;
(3)若圓C的面積為π,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0),焦點為F1、F2,雙曲線G:x2-y2=m(m>0)的頂點是該橢圓的焦點,設P是雙曲線G上異于頂點的任一點,直線PF1、PF2與橢圓的交點分別為A、B和C、D,已知三角形ABF2的周長等于8
2
,橢圓四個頂點組成的菱形的面積為8
2

(1)求橢圓E與雙曲線G的方程;
(2)設直線PF1、PF2的斜率分別為k1和k2,探求k1和k2的關系;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓E:
x2
8
+
y2
4
=1
焦點為F1、F2,雙曲線G:x2-y2=4,設P是雙曲線G上異于頂點的任一點,直線PF1、PF2與橢圓的交點分別為A、B和C、D.
(1)設直線PF1、PF2的斜率分別為k1和k2,求k1•k2的值;
(2)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,E的左頂點為A、上頂點為B,點P在橢圓上,且△PF1F2的周長為4+2
3

精英家教網(wǎng)
(I)求橢圓的方程;
(II)設C,D是橢圓E上兩不同點,CD∥AB,直線CD與x軸、y軸分別交于M,N兩點,且
MC
CN
,
MD
DN
,求λ+μ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)如圖,已知橢圓E:
x2
a2
+
y2
b2
=1 (a>b>0)
的離心率是
2
2
,P1、P2是橢圓E的長軸的兩個端點(P2位于P1右側(cè)),點F是橢圓E的右焦點.點Q是x軸上位于P2右側(cè)的一點,且滿足
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2

(Ⅰ) 求橢圓E的方程以及點Q的坐標;
(Ⅱ) 過點Q的動直線l交橢圓E于A、B兩點,連結(jié)AF并延長交橢圓于點C,連結(jié)BF并延長交橢圓于點D.
①求證:B、C關于x軸對稱;
②當四邊形ABCD的面積取得最大值時,求直線l的方程.

查看答案和解析>>

同步練習冊答案