如圖,橢圓
x2
a2
+
y2
b
=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設F1、F2分別為橢圓的左、右焦點,M為線段AF1的中點,求證:∠ATM=∠AF1T.
(I)過點A、B的直線方程為
x
2
+y=1

x2
a2
+
y2
b2
=1
,
因為由題意得有惟一解,y=-
1
2
x+1

(b2+
1
4
a2)x2-a2x2+a2-a2b2=0
有惟一解,
所以△=a2b2(a2+4b2-4)=0(ab≠0),
故a2+4b2-4=0.
又因為e=
3
2
,即
a2-b2
a2
=
3
4

所以a2=4b2
從而得a2=2,b2=
1
2

故所求的橢圓方程為
x2
2
+2y2=1

(II)由(I)得c=
6
2
,
F1(-
6
2
,0),F2(
6
2
,0)

從而M(1+
6
4
,0)

x2
2
+2y2=1
,
y=-
1
2
x+1

解得x1=x2=1,
所以T(1,
1
2
)

因為tan∠AF1T=
6
2
-1

tan∠TAM=
1
2
,tan∠TMF2=
2
6

tan∠ATM=
2
6
-
1
2
1+
1
6
=
6
2
-1
,
因此∠ATM=∠AF1T.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點.
(Ⅰ)若橢圓上的點A(1,
3
2
)到點F1、F2的距離之和等于4,求橢圓C的方程;
(Ⅱ)設點P是(Ⅰ)中所得橢圓C上的動點,求線段F1P的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知頂點在原點、對稱軸為坐標軸且開口向右的拋物線過點M(4,-4).
(1)求拋物線的方程;
(2)過拋物線焦點F的直線l與拋物線交于不同的兩點A、B,若|AB|=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓M、拋物線N的焦點均在x軸上的,且M的中心和M的頂點均為原點O,從每條曲線上取兩個點,將其坐標記錄于下表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求M,N的標準方程;
(Ⅱ)已知定點A(1,
1
2
),過原點O作直線l交橢圓M于B,C兩點,求△ABC面積的最大值和此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓
x2
6
+
y2
5
=1
內(nèi)的一點P(2,-1)的弦,恰好被點P平分,則這條弦所在直線方程( 。
A.y=
5
3
x-
5
6
B.y=
5
3
x-
13
3
C.y=-
5
3
x+
5
6
D.y=
5
3
x+
11
6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+
2
=0
相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P(4,0),M,N是橢圓C上關于x軸對稱的任意兩個不同的點,連接PN交橢圓C于另一點E,求直線PN的斜率的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明直線ME與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

y軸上兩定點B1(0,b)、B2(0,-b),x軸上兩動點M,N.P為B1M與B2N的交點,點M,N的橫坐標分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓mx2+ny2=1與直線x+y=1交于M,N兩點,MN的中點為P,且OP的斜率為
2
2
,則
m
n
的值為(  )
A.
2
2
B.
2
2
3
C.
9
2
2
D.
2
3
27

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C1
x2
4
+
y2
3
=1
,拋物線C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當AB⊥x軸時,求m、p的值,并判斷拋物線C2的焦點是否在直線AB上;
(Ⅱ)是否存在m、p的值,使拋物線C2的焦點恰在直線AB上?若存在,求出符合條件的m、p的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案