橢圓mx2+ny2=1與直線x+y=1交于M,N兩點(diǎn),MN的中點(diǎn)為P,且OP的斜率為
2
2
,則
m
n
的值為( 。
A.
2
2
B.
2
2
3
C.
9
2
2
D.
2
3
27
設(shè)M(x1,y1),N(x2,y2),P(x0,y0),
KOP=
y0
x0
=
2
2
①,
y2-y1
x2-x1
=-1
②,
由題意M,N在橢圓上,可得
mx12+ny12=1
mx22+ny22=1
,
兩式相減可得m(x1-x2)(x1+x2)+n(y1-y2)(y1+y2)=0③,
把①②代入③整理可得
m
n
=
2
2
,
故選:A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

線段PQ是橢圓
x2
4
+
y2
3
=1
過M(1,0)的一動(dòng)弦,且直線PQ與直線x=4交于點(diǎn)S,則
|SM|
|SP|
+
|SM|
|SQ|
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓
x2
a2
+
y2
b
=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圓O的半徑為定長(zhǎng)r,A是圓O外一定點(diǎn),P是圓上任意一點(diǎn).線段AP的垂直平分線l和直線OP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡是( 。
A.橢圓B.圓C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問:是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問:是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)F且垂直于x軸的直線交橢圓于點(diǎn)(-1,
2
2
)

(1)求橢圓C的方程;
(2)橢圓C的左、右頂點(diǎn)A、B,左、右焦點(diǎn)分別為F1,F(xiàn)2,P為以F1F2為直徑的圓上異于F1,F(xiàn)2的動(dòng)點(diǎn),問
AP
BP
是否為定值,若是求出定值,不是說明理由?
(3)是否存在過點(diǎn)Q(-2,0)的直線l與橢圓C交于兩點(diǎn)M、N,使得|FD|=
1
2
|MN|
(其中D為弦MN的中點(diǎn))?若存在,求出直線l的方程:若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

【理科】已知雙曲線的中心在坐標(biāo)原點(diǎn)O,一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的方程;
(2)設(shè)直線:y=kx+3與雙曲線交于A、B兩點(diǎn),試問:是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F1(2,0),離心率為e.
(1)若e=
2
2
,求橢圓的方程;
(2)設(shè)A,B為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF1的中點(diǎn)為M,BF1的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上.
①證明點(diǎn)A在定圓上;
②設(shè)直線AB的斜率為k,若k
3
,求e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知復(fù)數(shù)z滿足|z-2|=1,復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)的軌跡是C,若虛數(shù)滿足u+
1
u
∈R
,求|u|的值,并判斷虛數(shù)u所對(duì)應(yīng)的點(diǎn)與C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案