已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于,兩點,求證: .

(1)(2)詳見解析.

解析試題分析:(1)可利用待定系數(shù)法設(shè)拋物線方程為求解;
(2)因為是直線與圓錐曲線的相交問,可以設(shè)直線方程(斜率不存在時單獨討論),然后聯(lián)立拋物線方程和直線方程運用韋達定理結(jié)合條件來求解.
試題解析:解:(1)由題設(shè)拋物線的方程為:,
則點的坐標為,點的一個坐標為,2分
,∴,4分
,∴,∴.6分
(2)設(shè)、兩點坐標分別為、
法一:因為直線當的斜率不為0,設(shè)直線當的方程為
方程組

因為
所以
=0,
所以.
法二:①當的斜率不存在時,的方程為,此時
所以.       8分
的斜率存在時,設(shè)的方程為
方程組
所以10分
因為
所以
所以.
由①②得.12分
考點:1.拋物線的標準方程;2.直線與圓錐曲線的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C的頂點為O(0,0),焦點為F(0,1).

(1)求拋物線C的方程;
(2)過點F作直線交拋物線CAB兩點.若直線AOBO分別交直線lyx-2于M、N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線Cy2=2px(p>0),M點的坐標為(12,8),N點在拋物線C上,且滿足,O為坐標原點.

(1)求拋物線C的方程;
(2)以M點為起點的任意兩條射線l1,l2的斜率乘積為1,并且l1與拋物線C交于A,B兩點,l2與拋物線C交于D,E兩點,線段AB,DE的中點分別為G,H兩點.求證:直線GH過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為橢圓上的三個點,為坐標原點.
(1)若所在的直線方程為,求的長;
(2)設(shè)為線段上一點,且,當中點恰為點時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設(shè)與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.

(1)求橢圓C的方程;
(2)求點P的坐標;
(3)設(shè)M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動直線與橢圓交于、兩不同點,且△的面積=,其中為坐標原點.
(1)證明均為定值;
(2)設(shè)線段的中點為,求的最大值;
(3)橢圓上是否存在點,使得?若存在,判斷△的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點分別是橢圓的左、右焦點, 點在橢圓上上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)直線均與橢圓相切,試探究在軸上是否存在定點,點的距離之積恒為1?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點分別為,為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案