【題目】已知函數(shù).
討論函數(shù)的單調(diào)性;
若關(guān)于x的方程有唯一解,且,,求n的值.
【答案】(1) 當(dāng)時,函數(shù)在上單調(diào)遞增;當(dāng)時,函數(shù)在上單調(diào)遞增,函數(shù)在上單調(diào)遞減;
(2)。
【解析】
(1)先通過函數(shù)得出解析式,再對分別進行討論;
(2)首先可以根據(jù)設(shè),再對進行二次求導(dǎo)得出的最大值,并且根據(jù)方程有唯一解得出最大值等于0,然后進行聯(lián)立方程,計算得出結(jié)果。
(1).
當(dāng)時,,在上單調(diào)遞增;
當(dāng)時,由解得;由解得,
綜上所述:當(dāng)時,函數(shù)在上單調(diào)遞增;
當(dāng)時,函數(shù)在上單調(diào)遞增,
函數(shù)在上單調(diào)遞減.
(2)由已知可得方程有唯一解,且,.
設(shè)(),
即由唯一解,,.
由,令,
則,
所以在上單調(diào)遞減,即在上單調(diào)遞減.
又時,;時,,
故存在使得.
當(dāng)時,,在上單調(diào)遞增,
時,,在上單調(diào)遞減.
又有唯一解,則必有
由消去得.
令,
則
.
故當(dāng)時,,在上單調(diào)遞減,
當(dāng)時,,在上單調(diào)遞增.
由,,
即存在,使得即.
又關(guān)于的方程有唯一解,且,,
所以.
故。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,右頂點是,離心率為.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(不同于點),若,求證:直線過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點,點M為BB1的中點.
(1)求證:PB1⊥平面PAC;
(2)求直線CM與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫 子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:
表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排 列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如2268用算籌表示就是=||丄|||.執(zhí)行如圖所示程序框 圖,若輸人的x=1, y = 2,則輸出的S用算籌表示為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線y=xn+1(n∈N*)在點(1,1)處的切線與x軸的交點的橫坐標(biāo)為xn,令an=lgxn,則a1+a2+…+a99的值為( 。
A. 1 B. 2 C. -2 D. -1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面PAC⊥平面ABC,是以AC為斜邊的等腰直角三角形,E,F,O分別為PA,PB,AC的中點,.
(1)設(shè)G是OC的中點,證明:∥平面;
(2)證明:在內(nèi)存在一點M,使FM⊥平面BOE,求點M到OA,OB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請根據(jù)統(tǒng)計的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計值與前兩組數(shù)據(jù)的實際值誤差均不超過兩顆,則認為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時,平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計該農(nóng)場種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著電子商務(wù)的發(fā)展, 人們的購物習(xí)慣正在改變, 基本上所有的需求都可以通過網(wǎng)絡(luò)購物解決. 小韓是位網(wǎng)購達人, 每次購買商品成功后都會對電商的商品和服務(wù)進行評價. 現(xiàn)對其近年的200次成功交易進行評價統(tǒng)計, 統(tǒng)計結(jié)果如下表所示.
對服務(wù)好評 | 對服務(wù)不滿意 | 合計 | |
對商品好評 | 80 | 40 | 120 |
對商品不滿意 | 70 | 10 | 80 |
合計 | 150 | 50 | 200 |
(1) 是否有的把握認為商品好評與服務(wù)好評有關(guān)? 請說明理由;
(2) 若針對商品的好評率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進行觀察, 求只有一次好評的概率.
(,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com