. 已知離心率為的橢圓的右焦點是圓的圓心,過橢圓上的動點P作圓的兩條切線分別交軸于M、N兩點.

(I)求橢圓的方程;

(II)求線段MN長的最大值,并求此時點P的坐標.

(Ⅰ)    (Ⅱ) ,  


解析:

(I)∵圓的圓心是,

∴橢圓的右焦點 F,……………………1分

∵橢圓的離心率是,∴

,∴橢圓的方程是.……………………4分

(II)解法一:設,

,∴.…………5分

直線的方程:

化簡得

又圓心到直線的距離為1,∴ ,………………6分

,

化簡得, ………………………………………………7分

同理有. ……………………………………………… 8分                             

,,……………………………………………………9分

.………………………………10分

是橢圓上的點,∴,

,……………………11分                                

,則,

時,;時,,

上單調(diào)遞減,在內(nèi)也是單調(diào)遞減,………………13分

,

時,取得最大值,

此時點P位置是橢圓的左頂點.      …………………………14分   

解法二:由,∴.……5分

設過點P的圓的切線方程為,

∵圓心到直線的距離為1,

,化簡得,∴.…………6分

,…………………………8分

,,……………………………………9分

.…………………10分

是橢圓上的點,∴

,………………11分                                

,則

時,;時,,

上單調(diào)遞減,在內(nèi)也是單調(diào)遞減,…………13分

,

時,取得最大值,

此時點P位置是橢圓的左頂點.   ………………………………14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓的短軸端點與雙曲線
y2
2
-x2
=1的焦點重合,過P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(Ⅰ)求橢C的方程;
(Ⅱ)求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率e=
3
2
,S△DEF2=1-
3
2
.若點M(x0,y0)在橢圓C上,則點N(
x0
a
,
y0
b
)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的標準方程;
(2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應的實數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關于點(
k
2
,0)
對稱;⑤函數(shù)f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省懷化市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題

下圖展示了一個由區(qū)間(其中為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間中的實數(shù)對應線段上的點,如圖1;將線段圍成一個離心率為的橢圓,使兩端點、恰好重合于橢圓的一個短軸端點,如圖2 ;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在軸上,已知此時點的坐標為,如圖3,在圖形變化過程中,圖1中線段的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線與直線交于點,則與實數(shù)對應的實數(shù)就是,記作,

現(xiàn)給出下列5個命題

;   ②函數(shù)是奇函數(shù);③函數(shù)上單調(diào)遞增;   ④.函數(shù)的圖象關于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是:    (   )

A.①③⑤          B.②③④                       C.②③⑤             D.③④⑤

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013年湖南省懷化市高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應的實數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是( )
A.①③⑤
B.②③④
C.②③⑤
D.③④⑤

查看答案和解析>>

同步練習冊答案