(2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線(xiàn)段AB上的點(diǎn)M,如圖1;將線(xiàn)段AB圍成一個(gè)離心率為
3
2
的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線(xiàn)段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線(xiàn)AM與直線(xiàn)y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個(gè)命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
k
2
,0)
對(duì)稱(chēng);⑤函數(shù)f(m)=3
3
時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是(  )
分析:本題利用直接法和排除法解決.由題意知,①可直接求解其函數(shù)值進(jìn)行判斷;
②函數(shù)f(x)的定義域?yàn)椋?,k),不關(guān)于原點(diǎn)對(duì)稱(chēng),函數(shù)f(x)是非奇非偶函數(shù);
③當(dāng)x從0→k變化時(shí),點(diǎn)N逐漸右移,其對(duì)應(yīng)的坐標(biāo)值逐漸變大;
④由于當(dāng)m=
k
2
時(shí),對(duì)應(yīng)的點(diǎn)M是橢圓的另一短軸端點(diǎn),所以f(x)的圖象關(guān)于點(diǎn)(
k
2
,0)對(duì)稱(chēng);
⑤由于函數(shù)f(m)=3
3
,可求N點(diǎn)坐標(biāo),聯(lián)立A點(diǎn),可求直線(xiàn)AM,進(jìn)而即可判斷此時(shí)AM是否過(guò)橢圓的右焦點(diǎn).
解答:解:由題意知,①當(dāng)m=
k
2
時(shí),對(duì)應(yīng)的點(diǎn)M是橢圓的另一短軸端點(diǎn),f(
k
2
)=0,故①錯(cuò)誤;
②∵函數(shù)f(x)的定義域?yàn)椋?,4),關(guān)于原點(diǎn)不對(duì)稱(chēng),∴函數(shù)f(x)不可能是奇函數(shù),故②錯(cuò)誤;
③當(dāng)x從0→k變化時(shí),點(diǎn)N逐漸右移,其對(duì)應(yīng)的坐標(biāo)值逐漸變大,故③正確;
④由于當(dāng)m=
k
2
時(shí),對(duì)應(yīng)的點(diǎn)M是橢圓的另一短軸端點(diǎn),所以f(x)的圖象關(guān)于點(diǎn)(
k
2
,0)對(duì)稱(chēng),故④正確;
⑤由于函數(shù)f(m)=3
3
,則N(3
3
,-2
),故AM方程是:y=-
3
3
x+1
,
又由橢圓的右焦點(diǎn)坐標(biāo)為(
3
,0
),所以函數(shù)f(m)=3
3
時(shí)AM過(guò)橢圓的右焦點(diǎn),故⑤正確.
故答案為:③④⑤.
點(diǎn)評(píng):本題主要考查了映射和函數(shù)的概念及其構(gòu)成要素,具有一定的新意,關(guān)于新定義型的題,關(guān)鍵是理解定義,并會(huì)用定義來(lái)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化二模)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),CA=CB=CD=BD=2,AB=AD=
2

(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)求異面直線(xiàn)AB與CD所成角的余弦;
(Ⅲ)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化二模)如圖1,小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1,再把正方形A1B1C1D1的各邊延長(zhǎng)一倍得到正方形A2B2C2D2(如圖2),如此進(jìn)行下去,正方形AnBnCnDn的面積為
5n
5n
.(用含有n的式子表示,n為正整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化二模)如圖所示,四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的正方形,PA⊥面ABCD,PA=2,過(guò)點(diǎn)A作AE⊥PB,AF⊥PC,連接EF.
(1)求證:PC⊥面AEF;
(2)若面AEF交側(cè)棱PD于點(diǎn)G(圖中未標(biāo)出點(diǎn)G),求多面體P-AEFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化二模)實(shí)數(shù)a的值由如圖程序框圖算出,則二項(xiàng)式(
x
-
a
x
)9
展開(kāi)式的常數(shù)項(xiàng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案