【題目】批次的種燈泡個,對其命進行追蹤調(diào)查,將結果列頻率分布表如下,根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三級,其中大于或等于的燈泡優(yōu)等品,小于的燈泡次品,余的燈泡是正.

(天)

頻數(shù)

頻率

合計

(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出的值;

(2)某人從這個燈泡中隨機地購買了個,求此燈泡恰好不是次品的概率;

(3)某人從這批燈泡中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結果相同,求的最小值.

【答案】(1);(2);(3)10.

【解析】試題分析: (1) 由頻率分布表中的數(shù)據(jù),求出的值;(2)根據(jù)頻率分布表中的數(shù)據(jù),求出此人購買的燈泡怡好不是次品的概率;(3)由這批燈泡中優(yōu)等品、正品和次品的比例數(shù),再按分層抽樣方法,求出購買燈泡數(shù)的最小值.

試題解析:(1).

(2)設“此人購買的燈泡恰好不是次品”為事件,由表可知:這批燈泡中優(yōu)等品有60個,正品有100個,次品有40個,所以此人購買的燈泡恰好不是次品的概率為.

(3)由表,得這批燈泡中優(yōu)等品、正品和次品的比例為,所以按分層抽樣法,購買的燈泡數(shù),所以的最小值為10.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )=

(1)求ω和φ的值;
(2)在給定坐標系中作出函數(shù)f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 是參數(shù))和定點 , F1 , F2 是圓錐曲線的左、右焦點.
(1)求經(jīng)過點 F2 且垂直于直線 AF1 的直線 l 的參數(shù)方程;
(2)設 P 為曲線 C 上的動點,求 P 到直線 l 距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形和等邊三角形中, ,平面平面

(1)在上找一點,使,并說明理由;

(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察研究某種植物的生長速度與溫度的關系,經(jīng)過統(tǒng)計,得到生長速度(單位:毫米/月)與月平均氣溫的對比表如下:

溫度

-5

0

6

8

12

15

20

生長速度

2

4

5

6

7

8

10

(1)求生長速度關于溫度的線性回歸方程;(斜率和截距均保留為三位有效數(shù)字);

(2)利用(1)中的線性回歸方程,分析氣溫從時生長速度的變化情況,如果某月的平均氣溫是時,預測這月大約能生長多少.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為1的正方體ABCD﹣A1B1C1D1中,E、F分別為棱AA1、BB1的中點,G為棱A1B1上的一點,且A1G=λ(0≤λ≤1),則點G到平面D1EF的距離為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=

(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點,H為BC中點,求異面直線AB與FH所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)圖象上的點(1,﹣ )處的切線斜率為﹣4,
(1)求f(x)的表達式.
(2)求y=f(x)在區(qū)間[﹣3,6]上的最值.

查看答案和解析>>

同步練習冊答案