【題目】設(shè)x∈R,[x]表示不超過x的最大整數(shù),若存在實數(shù)t,使得[t]=1,[t2]=2,…,[tn]=n同時成立,則正整數(shù)n的最大值是

【答案】4
【解析】解:若[t]=1,則t∈[1,2),
若[t2]=2,則t∈[ , )(因為題目需要同時成立,則負(fù)區(qū)間舍去),
若[t3]=3,則t∈[ , ),
若[t4]=4,則t∈[ , ),
若[t5]=5,則t∈[ ),
其中 ≈1.732, ≈1.587, ≈1.495, ≈1.431<1.495,
通過上述可以發(fā)現(xiàn),當(dāng)t=4時,
可以找到實數(shù)t使其在區(qū)間[1,2)∩[ )∩[ , )∩[ )上,
但當(dāng)t=5時,無法找到實數(shù)t使其在區(qū)間[1,2)∩[ , )∩[ , )∩[ , )∩[ , )上,
∴正整數(shù)n的最大值4,
所以答案是:4.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的最值及其幾何意義的相關(guān)知識,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為 ,且過點D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點 ,若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ ﹣ax+a,在區(qū)間[﹣2,2]有最小值﹣3
(1)求實數(shù)a的值,
(2)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, .

(1)證明:數(shù)列為等差數(shù)列;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x+1)的定義域為[﹣1,0],則函數(shù)f( ﹣2)的定義域為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計,得出相關(guān)數(shù)據(jù)見下表:

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點的殘差(也叫隨機(jī)誤差));

租用單車數(shù)量 (千輛)

2

3

4

5

8

每天一輛車平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ (x>0,m>0)和函數(shù)g(x)=a|x﹣b|+c(x∈R,a>0,b>0).問:
(1)證明:f(x)在( ,+∞)上是增函數(shù);
(2)把函數(shù)g1(x)=|x|和g2(x)=|x﹣1|寫成分段函數(shù)的形式,并畫出它們的圖象,總結(jié)出g2(x)的圖象是如何由g1(x)的圖象得到的.請利用上面你的結(jié)論說明:g(x)的圖象關(guān)于x=b對稱;
(3)當(dāng)m=1,b=2,c=0時,若f(x)>g(x)對于任意的x>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=
(1)求函數(shù)的定義域及值域;
(2)確定函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

設(shè)函數(shù)有兩個極值點,且

I)求的取值范圍,并討論的單調(diào)性;

II)證明: w.w.w..c.o.m

查看答案和解析>>

同步練習(xí)冊答案