設函數(shù)f(x)=ax+
xx-1
(x>1)
,若a是從1,2,3三數(shù)中任取一個,b是從2,3,4,5四數(shù)中任取一個,那么f(x)>b恒成立的概率為( 。
分析:先把f(x)的解析式變形,用分離常數(shù)法,然后用均值不等式求出最小值,本題是一個古典概型,試驗發(fā)生包含的所有事件是12個,滿足條件的事件是10個,列舉出結果.
解答:解:x>1,a>0,f(x)=ax+
x-1+1
x-1
=ax+
1
x-1
+1
=a(x-1)+
1
x-1
+1+a≥2
a
+1+a=(
a
+1)2,
當且僅當x=
1
a
+1>1時,取“=”,
∴f(x)min=(
a
+1)2,
于是f(x)>b恒成立就轉化為(
a
+1)2>b成立.
設事件A:“f(x)>b恒成立”,則
基本事件總數(shù)為12個,即
(1,2),(1,3),(1,4),(1,5);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5);
事件A包含事件:(1,2),(1,3);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5)共10個
由古典概型得P(A)=
10
12
=
5
6

故選D.
點評:在使用古典概型的概率公式時,應該注意:(1)要判斷該概率模型是不是古典概型;(2)要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù);當解析式中含有分式,且分子分母是齊次的,注意運用分離常數(shù)法來進行式子的變形,在使用均值不等式應注意一定,二正,三相等.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+
a+1
x
 
(a>0)
,g(x)=4-x,已知滿足f(x)=g(x)的x有且只有一個.
(Ⅰ)求a的值;
(Ⅱ)若f(x)+
m
x
>1
對一切x>0恒成立,求m的取值范圍;
(Ⅲ)若函數(shù)h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域為[m,n](其中n>m>0),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0,
(1)求y=f(x)的解析式,并求其單調區(qū)間;
(2)用陰影標出曲線y=f(x)與此切線以及x軸所圍成的圖形,并求此圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
ax-1x+1
;其中a∈R

(Ⅰ)解不等式f(x)≤1;
(Ⅱ)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)討論函數(shù)f(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案