【題目】某市在對學(xué)生的綜合素質(zhì)評價中,將其測評結(jié)果分為“優(yōu)秀、合格、不合格”三個等級,其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”. 參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)某校高一年級有男生500人,女生400人,為了解性別對該綜合素質(zhì)評價結(jié)果的影響,采用分層抽樣的方法從高一學(xué)生中抽取45名學(xué)生的綜合素質(zhì)評價結(jié)果,其各個等級的頻數(shù)統(tǒng)計如下表:
等級 | 優(yōu)秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
根據(jù)表中統(tǒng)計的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認為“綜合素質(zhì)評價測評結(jié)果為優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 男生 | 女生 | 總計 |
非優(yōu)秀 | |||
總計 |
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評價等級的頻率作為全市各個評價等級發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨立,現(xiàn)從該市高一學(xué)生中隨機抽取3人. ①求所選3人中恰有2人綜合素質(zhì)評價為“優(yōu)秀”的概率;
②記X表示這3人中綜合素質(zhì)評價等級為“優(yōu)秀”的個數(shù),求X的數(shù)學(xué)期望.
【答案】
(1)解:設(shè)從高一年級男生中抽出m人,則 ,
解得m=25.
∴x=25﹣20=5,y=20﹣18=2.
∴2×2列聯(lián)表為:
男生 | 女生 | 總計 | |
優(yōu)秀 | 15 | 15 | 30 |
非優(yōu)秀 | 10 | 5 | 15 |
總計 | 25 | 20 | 45 |
∴K2=
45(15×5﹣10×15)2 |
30×15×25×20 |
=1.125<2.706,
∴沒有90%的把握認為“綜合素質(zhì)評價測評結(jié)果為優(yōu)秀與性別有關(guān)”
(2)解:①由(1)知等級為“優(yōu)秀”的學(xué)生的頻率為 = ,
∴從該市高一學(xué)生中隨機抽取一名學(xué)生,該生為“優(yōu)秀”的概率為 .
記“所選3名學(xué)生中恰有2人綜合素質(zhì)評價為‘優(yōu)秀’學(xué)生”為事件A,
則事件A發(fā)生的概率為:P(A)= = .
②X表示這3個人中綜合速度評價等級為“優(yōu)秀”的個數(shù),
由題意,隨機變量X~B(3, ),
∴X的數(shù)學(xué)期望E(X)=3× =2
【解析】(1)先求出從高一年級男生中抽出人數(shù)及x,y,作出2×2列聯(lián)表,求出K2=1.125<2.706,從而得到?jīng)]有90%的把握認為“綜合素質(zhì)評價測評結(jié)果為優(yōu)秀與性別有關(guān)”.(2)①由(1)知等級為“優(yōu)秀”的學(xué)生的頻率為 ,從該市高一學(xué)生中隨機抽取一名學(xué)生,該生為“優(yōu)秀”的概率為 .由此能求出所選3名學(xué)生中恰有2人綜合素質(zhì)評價為‘優(yōu)秀’學(xué)生的概率.②X表示這3個人中綜合速度評價等級為“優(yōu)秀”的個數(shù),由題意,隨機變量X~B(3, ),由此能求出X的數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“若x2=1,則x=1”的否命題是“若x2=1,則x≠1”
B. 若命題p:x0∈R,,則:x∈R,x2-2x-1<0
C. 命題“若x=y(tǒng),則sin x=sin y”的逆否命題為真命題
D. “x=-1”是“x2-5x-6=0”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(12分)
(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若樣本平均數(shù)是4,方差是2,則另一樣本的平均數(shù)和方差分別為( )
A. 12,2 B. 14,6 C. 12,8 D. 14,18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)高中某學(xué)科競賽中,該中學(xué)100名考生的參賽成績統(tǒng)計如圖所示.
(1)求這100名考生的競賽平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)記70分以上為優(yōu)秀,70分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有99%的把握認為該學(xué)科競賽成績與性別有關(guān)?
合格 | 優(yōu)秀 | 合計 | |
男生 | 18 | ||
女生 | 25 | ||
合計 | 100 |
附:.
0.050 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠從一批產(chǎn)品中隨機抽取20件進行檢測,如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[140,200],樣本數(shù)據(jù)分組為[140,150),[150,160),[160,170),[170,180),[180,190),[190,200].
(1)求圖中a的值;
(2)若頻率視為概率,從這批產(chǎn)品中有放回地隨機抽取3件,求至少有2件產(chǎn)品的凈重在[160,180)中的概率;
(3)若產(chǎn)品凈重在[150,190)為合格產(chǎn)品,其余為不合格產(chǎn)品,從這20件抽樣產(chǎn)品中任取2件,記X表示選到不合格產(chǎn)品的件數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若兩直線的傾斜角分別為 與,則下列四個命題中正確的是( )
A. 若<,則兩直線的斜率:k1 < k2 B. 若=,則兩直線的斜率:k1= k2
C. 若兩直線的斜率:k1 < k2 ,則< D. 若兩直線的斜率:k1= k2 ,則=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com