【題目】已知函數(shù)f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲線過原點,且在x=±1處的切線斜率均為﹣1,給出以下結(jié)論: ①f(x)的解析式為f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的極值點有且僅有一個;
③f(x)的最大值與最小值之和等于0.
其中正確的結(jié)論有( )
A.0個
B.1個
C.2個
D.3個
【答案】C
【解析】解:函數(shù)f(x)=x3+ax2+bx+c的圖象過原點,可得c=0;
又f′(x)=3x2+2ax+b,且f(x)在x=±1處的切線斜率均為﹣1,
則有 ,解得a=0,b=﹣4.
所以f(x)=x3﹣4x,f′(x)=3x2﹣4.①可見f(x)=x3﹣4x,因此①正確;②令f′(x)=0,得x=± .因此②不正確;
所以f(x)在[﹣ , ]內(nèi)遞減,
且f(x)的極大值為f(﹣ )= ,極小值為f( )=﹣ ,兩端點處f(﹣2)=f(2)=0,
所以f(x)的最大值為M= ,最小值為m=﹣ ,則M+m=0,因此③正確.
所以正確的結(jié)論為①③,
故選C.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值,以及對函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科考試中,從甲、乙兩個班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格. (Ⅰ)設(shè)甲、乙兩個班所抽取的10名同學(xué)成績方差分別為 、 ,比較 、 的大小(直接寫出結(jié)果,不寫過程);
(Ⅱ)從甲班10人任取2人,設(shè)這2人中及格的人數(shù)為X,求X的分布列和期望;
(Ⅲ)從兩班這20名同學(xué)中各抽取一人,在已知有人及格的條件下,求抽到乙班同學(xué)不及格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖都是邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第n個幾何體的表面積是個平方單位.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC1∥平面CDB1;
(2)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺舉行電視奧運知識大獎賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進(jìn)入決賽,答錯3題者則被淘汰.已知選手甲答題的正確率為 . (Ⅰ)求選手甲可進(jìn)入決賽的概率;
(Ⅱ)設(shè)選手甲在初賽中答題的個數(shù)為ξ,試寫出ξ的分布列,并求ξ的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三棱柱中,D是AC的中點,AB1⊥BC1,則平面DBC1與平面CBC1所成的角為( )
A.30° B.45°
C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求證:不論m取什么實數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經(jīng)過一個定點,并求出這個定點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com