給出下列四個命題:①平行于母線的平面截圓錐,截面是等腰三角形;②圓柱是將矩形旋轉(zhuǎn)一周所得的幾何體;③若直線l1,l2與同一平面所成的角相等,則l1,l2互相平行;④若直線l1,l2是異面直線,則與l1,l2都相交的兩條直線是異面直線,其中假命題的個數(shù)是( 。
分析:根據(jù)圓錐、圓柱的結(jié)構(gòu)特征,由截面圖形,判定①②的正誤;根據(jù)線面角判斷③的正誤;根據(jù)異面直線的概念對④進(jìn)行判斷即可.
解答:解:①平行于母線的平面截圓錐,截面不是等腰三角形,故①不正確;
②圓柱是將矩形以矩形的一條對角線為軸,旋轉(zhuǎn)所得的就不是圓柱,故②錯;
③若直線l1,l2與同一平面所成的角相等,則l1,l2也可能相交直線,故錯;
④若直線l1,l2是異面直線,則與l1,l2都相交的兩條直線可能是相交直線,故錯.
其中假命題的個數(shù)是:4
故選D.
點評:本題考查圓錐、圓臺的結(jié)構(gòu)特征,考查空間想象能力,是基礎(chǔ)題.還考查了空間線面的位置關(guān)系以及空間想象能力,同時考查了立體幾何問題處理中運用特殊幾何體舉反例證的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案