已知函數(shù),設(shè)
(1)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(2)求函數(shù)在上的最小值.
(1) (2)
解析試題分析:(1)
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間
(2)當(dāng)時(shí),在上單調(diào)遞增,
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減,
同理,
綜上:當(dāng)在上的最小值為
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):對(duì)于導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,一般考查了導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系,以及函數(shù)的最值,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
將52名志愿者分成A,B兩組參加義務(wù)植樹(shù)活動(dòng),A組種植150捆白楊樹(shù)苗,B組種植200捆沙棘樹(shù)苗.假定A,B兩組同時(shí)開(kāi)始種植.
(1)根據(jù)歷年統(tǒng)計(jì),每名志愿者種植一捆白楊樹(shù)苗用時(shí)小時(shí),種植一捆沙棘樹(shù)苗用時(shí)小時(shí).應(yīng)如何分配A,B兩組的人數(shù),使植樹(shù)活動(dòng)持續(xù)時(shí)間最短?
(2)在按(1)分配的人數(shù)種植1小時(shí)后發(fā)現(xiàn),每名志愿者種植一捆白楊樹(shù)苗用時(shí)仍為小時(shí),而每名志愿者種植一捆沙棘樹(shù)苗實(shí)際用時(shí)小時(shí),于是從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹(shù)活動(dòng)所持續(xù)的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在某服裝批發(fā)市場(chǎng),某種品牌的時(shí)裝當(dāng)季節(jié)將來(lái)臨時(shí),價(jià)格呈上升趨勢(shì),設(shè)這種時(shí)裝開(kāi)始時(shí)定價(jià)為20元,并且每周(7天)漲價(jià)2元,從第6周開(kāi)始保持30元的價(jià)格平穩(wěn)銷售;從第12周開(kāi)始,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周減價(jià)2元,直到第16周周末,該服裝不再銷售。
⑴試建立銷售價(jià)y與周次x之間的函數(shù)關(guān)系式;
⑵若這種時(shí)裝每件進(jìn)價(jià)Z與周次次之間的關(guān)系為Z=,1≤≤16,且為整數(shù),試問(wèn)該服裝第幾周出售時(shí),每件銷售利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y (單位:千克)與銷售價(jià)格 (單位:元/千克)滿足關(guān)系式y=+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成品為3元/千克, 試確定銷售價(jià)格x的值, 使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
某商品每件成本9元,售價(jià)為30元,每星期賣出432件,如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值(單位:元,)的平方成正比,已知商品單價(jià)降低2元時(shí),一星期多賣出24件.(I)將一個(gè)星期的商品銷售利潤(rùn)表示成的函數(shù);(II)如何定價(jià)才能使一個(gè)星期的商品銷售利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒. 已知藥物釋放過(guò)程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為(a為常數(shù)),
如圖所示,根據(jù)圖中提供的信息,回答下列問(wèn)題:
(Ⅰ)從藥物釋放開(kāi)始,求每立方米空氣中的含藥量
y(毫克)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式?
(Ⅱ)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室,那從藥物釋放開(kāi)始,至少需要經(jīng)過(guò)多少小時(shí)后,學(xué)生才能回到教室.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知甲、乙兩個(gè)工廠在今年的1月份的利潤(rùn)都是6萬(wàn),且乙廠在2月份的利潤(rùn)是8萬(wàn)元.若甲、乙兩個(gè)工廠的利潤(rùn)(萬(wàn)元)與月份x之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:f(x)=a1x2—4x+6,g(x)=a2+b2(a1,a2,b2∈R).
(1)求函數(shù)f(x)與g(x)的解析式;
(2)求甲、乙兩個(gè)工廠今年5月份的利潤(rùn);
(3)在同一直角坐標(biāo)系下畫(huà)出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年1—10月份甲、乙兩個(gè)工廠的利潤(rùn)的大小情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù),其中
(Ⅰ)求在上的單調(diào)區(qū)間;
(Ⅱ)求在(為自然對(duì)數(shù)的底數(shù))上的最大值;
(III)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)、,使得是以原點(diǎn)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com