(本題滿分12分)
為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒. 已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為(a為常數(shù)),

如圖所示,根據(jù)圖中提供的信息,回答下列問題:
(Ⅰ)從藥物釋放開始,求每立方米空氣中的含藥量
y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式?
(Ⅱ)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進(jìn)教室,那從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到教室.

(Ⅰ)(Ⅱ)

解析試題分析:(Ⅰ)兩曲線交于點(0.1,1),故t∈(0,0.1]時,y=10t;t∈[0.1,+∞)時,
將(0.1,1)代入,得
故所求函數(shù)關(guān)系為:    ……6分
(Ⅱ)由(Ⅰ)知:當(dāng)t∈[0.1,+∞)時,y為t的減函數(shù).
.
小時,也就是36分鐘后,學(xué)生才能回到教室.                ……12分
考點:求函數(shù)解析式及函數(shù)求值
點評:第一問求分段函數(shù)解析式要針對不同的自變量的取值范圍求出相應(yīng)的解析式,最后寫成分段函數(shù)形式;第二問求解指數(shù)不等式要結(jié)合指數(shù)函數(shù)的單調(diào)性

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)一種儀器,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)以往的經(jīng)驗知道,其次品率P與日產(chǎn)量(件)之間近似滿足關(guān)系:
(其中為小于96的正整常數(shù))
(注:次品率P=,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品.)已知每生產(chǎn)一件合格的儀器可以盈利A元,但每生產(chǎn)一件次品將虧損A/2元,故廠方希望定出合適的日產(chǎn)量。
試將生產(chǎn)這種儀器每天的贏利T(元)表示為日產(chǎn)量(件的函數(shù));
當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,有(其中為自然對數(shù)的底,).
(1)求函數(shù)的解析式;
(2)設(shè),,求證:當(dāng)時,;
(3)試問:是否存在實數(shù),使得當(dāng)時,的最小值是3?如果存在,求出實數(shù)的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),設(shè)
(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);
(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)減函數(shù)(Ⅰ)求函數(shù);(Ⅱ)討論的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知二次函數(shù)滿足
(Ⅰ)求的解析式;
(Ⅱ)當(dāng)時,不等式:恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)若時,在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點,過線段的中點軸的垂線分別交、于點,,問是否存在點,使處的切線與處的切線平行?若存在,求的橫坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤和投資單位:萬元).

(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤?
②問:如果你是廠長,怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù),且不等式的解集為
(1)求的值;
(2)解關(guān)于的不等式

查看答案和解析>>

同步練習(xí)冊答案