已知關(guān)于x的不等式x2-4x-m<0的非空解集為{x|n<x<5}.
(1)求實數(shù)m,n的值;
(2)若函數(shù)f(x)=-x2+4ax+4在(1,+∞)上遞減,求關(guān)于x的不等式loga(-nx2+3x+2-m)>0(a>0,a≠1)的解集.
分析:(1)根據(jù)x的不等式x2-4x-m<0的非空解集為{x|n<x<5},得到n和5是方程x2-4x-m=0的兩個根.根據(jù)根與系數(shù)之間的關(guān)系得到結(jié)果.
(2)由題意知,二次函數(shù)的對稱軸x=2a,2a≤1,得a≤
1
2
,得到a的范圍是(0,
1
2
]
,根據(jù)loga(-nx2+3x+2-m)>0得到0<-nx2+3x+2-m<1,得到結(jié)果.
解答:解:(1)∵x的不等式x2-4x-m<0的非空解集為{x|n<x<5}.
由題意知,n和5是方程x2-4x-m=0的兩個根,…(2分)
所以n+5=4,5n=-m,得n=-1,m=5   …(4分)
(2)由題意知,對稱軸x=2a,2a≤1,得a≤
1
2
,a的范圍是(0,
1
2
]
…(6分)
loga(-nx2+3x+2-m)>0?0<-nx2+3x+2-m<1
x2+3x-4<0
x2+3x-3>0
,…(10分)
-4<x<
-3-
21
2
-3+
21
2
<x<1
…(12分)
所以原不等式的解集為(-4,
-3-
21
2
)∪(
-3+
21
2
,1)
.…(14分)
點評:本題看出一元二次方程與一元二次不等式之間的關(guān)系,本題解題的關(guān)鍵是求出m的值,這樣才能解決第二問,本題是一個中檔題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設(shè)
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關(guān)于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知關(guān)于x的不等式|x-3|+|x-4|<3a2-7a+4.
(1)當a=2時,解上述不等式;
(2)如果關(guān)于x的不等式|x-3|+|x-4|<23a2-7a+4的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)幾何證明選講:如圖,CB是⊙O的直徑,AP是⊙O的切線,A為切點,AP與CB的延長線交于點P,若PA=8,PB=4,求AC的長度.
(2)坐標系與參數(shù)方程:在極坐標系Ox中,已知曲線C1:ρcos(θ+
π
4
)
=
2
2
與曲線C2;ρ=1相交于A、B兩點,求線段AB的長度.
(3)不等式選講:解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式x+
1x-a
≥7在x∈(a,+∞)
上恒成立,則實數(shù)a的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省原名校高三下學(xué)期第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知關(guān)于x的不等式|x-3|+|x-4|< 3a2-7a+4.

(1)當a=2時,解上述不等式;

(2)如果關(guān)于x的不等式| x-3|+|x-4|< 23a27a+4的解集為空集,求實數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案