已知關(guān)于x的不等式x+
1x-a
≥7在x∈(a,+∞)
上恒成立,則實(shí)數(shù)a的最小值為
5
5
分析:構(gòu)造函數(shù)g(x)=x+
1
x-a
-7,(x>a),利用g(x)在(a,a+1]上單調(diào)遞減,在[a+1,+∞)上單調(diào)遞增即可求得答案.
解答:解:令g(x)=x+
1
x-a
-7,
則g(x)=(x-a)+
1
x-a
+a-7,
由雙鉤函數(shù)的性質(zhì)得:g(x)在(a,a+1]上單調(diào)遞減,在[a+1,+∞)上單調(diào)遞增,
∴g(x)min=g(a+1)=1+a+1-7=a-5≥0.
∴a≥5.
∴實(shí)數(shù)a的最小值為5.
故答案為:5
點(diǎn)評:本題考查雙鉤函數(shù)的單調(diào)性,分析出g(x)=x+
1
x-a
-7在x=a+1處取到最小值是關(guān)鍵,也是難點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設(shè)
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關(guān)于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知關(guān)于x的不等式|x-3|+|x-4|<3a2-7a+4.
(1)當(dāng)a=2時(shí),解上述不等式;
(2)如果關(guān)于x的不等式|x-3|+|x-4|<23a2-7a+4的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)幾何證明選講:如圖,CB是⊙O的直徑,AP是⊙O的切線,A為切點(diǎn),AP與CB的延長線交于點(diǎn)P,若PA=8,PB=4,求AC的長度.
(2)坐標(biāo)系與參數(shù)方程:在極坐標(biāo)系Ox中,已知曲線C1:ρcos(θ+
π
4
)
=
2
2
與曲線C2;ρ=1相交于A、B兩點(diǎn),求線段AB的長度.
(3)不等式選講:解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省原名校高三下學(xué)期第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知關(guān)于x的不等式|x-3|+|x-4|< 3a2-7a+4.

(1)當(dāng)a=2時(shí),解上述不等式;

(2)如果關(guān)于x的不等式| x-3|+|x-4|< 23a27a+4的解集為空集,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案