【題目】如圖,在底面是正方形的四棱錐中,平面,,是的中點.
(1)求證:平面;
(2)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,說明理由.
【答案】(1)證明見解析;(2)存在,.
【解析】
(1)以點為坐標(biāo)原點,所在直線分別為軸建立空間直角坐標(biāo)系,證出,且,根據(jù)線面垂直的判定定理即可證明.
(2)假設(shè)存在,利用線面垂直的定義證出即可.
(1)證明:因為四棱錐底面是正方形,且平面,
以點為坐標(biāo)原點,
所在直線分別為軸建立如圖
所示空間直角坐標(biāo)系.
則,
,
因為是的中點,
所以,
所以,
所以,且.
所以,,且.
所以⊥平面.
(2)假設(shè)在線段上存在點,使得//平面.
設(shè),
則.
因為//平面,⊥平面,
所以.
所以.
所以,在線段上存在點,使得//平面.其中.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1,F2分別是橢圓C:1(>b>0)的左、右焦點,過F2且不與x軸垂直的動直線l與橢圓交于M,N兩點,點P是橢圓C右準(zhǔn)線上一點,連結(jié)PM,PN,當(dāng)點P為右準(zhǔn)線與x軸交點時有2PF2=F1F2.
(1)求橢圓C的離心率;
(2)當(dāng)點P的坐標(biāo)為(2,1)時,求直線PM與直線PN的斜率之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌新款夏裝即將上市,為了對新款夏裝進(jìn)行合理定價,在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店 | A店 | B店 | C店 | |||
售價x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷量y(元) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分別以三家連鎖店的平均售價與平均銷量為散點,如A店對應(yīng)的散點為,求出售價與銷量的回歸直線方程;
(2)在大量投入市場后,銷量與單價仍然服從(1)中的關(guān)系,且該夏裝成本價為40元/件,為使該新夏裝在銷售上獲得最大利潤,該款夏裝的單價應(yīng)定為多少元?(保留整數(shù))
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點E是棱PC的中點,平面ABE與棱PD交于點F.
(1)求證:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上的線段及點,任取上一點,線段長度的最小值稱為點到線段的距離,記作.請你寫出到兩條線段,距離相等的點的集合,,,其中,,,,,是下列兩組點中的一組.對于下列兩種情形,只需選做一種,滿分分別是① 3分;② 5分.① ,,,;② ,,,.你選擇第_____種情形,到兩條線段,距離相等的點的集合_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知底面邊長為a的正三棱柱(底面是等邊三角形的直三棱柱)的六個頂點在球上,且球與此正三棱柱的5個面都相切,則球與球的表面積之比為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間為函數(shù)的一個“可等域區(qū)間”.給出下列4個函數(shù):
①;②; ③; ④.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時,能實現(xiàn)要求嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌新款夏裝即將上市,為了對新款夏裝進(jìn)行合理定價,在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店 | A店 | B店 | C店 | |||
售價x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷量y(元) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分別以三家連鎖店的平均售價與平均銷量為散點,如A店對應(yīng)的散點為,求出售價與銷量的回歸直線方程;
(2)在大量投入市場后,銷量與單價仍然服從(1)中的關(guān)系,且該夏裝成本價為40元/件,為使該新夏裝在銷售上獲得最大利潤,該款夏裝的單價應(yīng)定為多少元?(保留整數(shù))
附:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com