若雙曲線C的兩條漸近線的方程為,則該雙曲線方程可以為    .(只需寫出一個(gè)滿足題設(shè)的雙曲線方程)
【答案】分析:根據(jù)共漸近線雙曲線方程的一般形式,可設(shè)雙曲線方程為=λ(λ≠0),再特殊的λ值即可得到
滿足題意的一個(gè)雙曲線方程.
解答:解:∵雙曲線C的兩條漸近線的方程為
∴可設(shè)雙曲線方程為=λ(λ≠0)
即y2-=λ,取λ=-9得,即為滿足題意的一個(gè)雙曲線方程
故答案為:(答案不唯一)
點(diǎn)評(píng):本題給出雙曲線的漸近線方程,求滿足條件的一個(gè)雙曲線方程.著重考查了雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右頂點(diǎn)A作斜率為-1的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為B、C.若
AB
=
1
2
BC
,則雙曲線的離心率是( 。
A、
2
B、
3
C、
5
D、
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)四點(diǎn)A、B、C、D均在雙曲線x2-y2=1的右支上.
(1)若
AB
=λ
CD
(實(shí)數(shù)λ≠0),證明:
OA
OB
=
OC
OD
(O是坐標(biāo)原點(diǎn));
(2)若|AB|=2,P是線段AB的中點(diǎn),過點(diǎn)P分別作該雙曲線的兩條漸近線的垂線,垂足為M、N,求四邊形OMPN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右頂點(diǎn)A作斜率為-1的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為B,C,若A,B,C三點(diǎn)的橫坐標(biāo)成等比數(shù)列,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線C的兩條漸近線的方程為y=±
3
4
x
,則該雙曲線方程可以為
x2
16
-
y2
9
=1
(答案不唯一)
x2
16
-
y2
9
=1
(答案不唯一)
.(只需寫出一個(gè)滿足題設(shè)的雙曲線方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)在平面直角坐標(biāo)系xOy中,已知雙曲線C:2x2-y2=1.
(1)設(shè)F是C的左焦點(diǎn),M是C右支上一點(diǎn),若|MF|=2
2
,求點(diǎn)M的坐標(biāo);
(2)過C的左焦點(diǎn)作C的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;
(3)設(shè)斜率為k(|k|<
2
)的直線l交C于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ.

查看答案和解析>>

同步練習(xí)冊答案