是兩個不同的平面,m、n是平面之外的兩條不同直線,給出四個論斷:(1),(2),(3),(4)。以其中三個論斷作為條件,余下一個論斷為結(jié)論,寫出你認(rèn)為正確的一個命題___ _;
通過線面關(guān)系,不難得出正確的命題有:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面PAD⊥平面ABCD,ABCD為正力形,∠PAD=900,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn)。

(1)求證:PB∥平面EFG;
(2)求異面直線EG與BD所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分共12分)如圖,在中,邊上高,,,沿翻折,使得,得到幾何體。(1)求證:

(2)求與平面成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線平面,直線平面,給出下列命題中
;②;
;④.其中正確的是(      )
A.①②③B.②③④C.②④D.①③學(xué)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知,三棱錐P-ABC中,側(cè)棱PC與底面成600的角,ABAC,BPACAB=4,AC=3.

(1) 求證:截面ABP⊥底面ABC;(2)求三棱錐P-ABC的體積的最小值,及此時二面角A-PC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在三棱柱ABC-A1B1C1中,∠ACB=900,∠ACC1=600,∠BCC1=450,側(cè)棱CC1的長為1,則該三棱柱的高等于()
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖5所示,四棱錐的底面是半徑為的圓的內(nèi)接四邊形,其中是圓的直徑,,
(1)求線段的長;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個長、寬、高分別為a、b、c長方體的體積是8cm2,它的全面積是32cm2,且滿足b2=ac,求這個長方體所有棱長之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在三棱錐P-ABC中,∠APB=∠BPC=∠APC=90°,M在△ABC內(nèi),∠MPA=60°,∠MPB=45°,則∠MPC的度數(shù)為(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

同步練習(xí)冊答案