【題目】如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點(diǎn),=AC=CB=AB.
(Ⅰ)證明://平面;
(Ⅱ)求二面角D--E的正弦值.
【答案】(Ⅰ)見解析(Ⅱ)
【解析】(Ⅰ)連結(jié),交于點(diǎn)O,連結(jié)DO,則O為的中點(diǎn),因?yàn)?/span>D為AB的中點(diǎn),所以
OD∥,又因?yàn)?/span>OD平面, 平面,所以//平面;
(Ⅱ)由=AC=CB=AB可設(shè):AB=,則=AC=CB=,所以AC⊥BC,又因?yàn)橹崩庵砸渣c(diǎn)C為坐標(biāo)原點(diǎn),分別以直線CA、CB、為x軸、y軸、z軸,建立空間直角坐標(biāo)系如圖,
則、、、,,,,,設(shè)平面的法向量為,則且,可解得,令,得平面的一個(gè)法向量為,同理可得平面的一個(gè)法向量為,則 ,所以,所以二面角D--E的正弦值為.
本題第(Ⅰ)問,證明直線與平面平行,主要應(yīng)用線面平行的判定定理,一般情況下,遇到中點(diǎn)想中位線的思想要用上,同時(shí)用上側(cè)面為平行四邊形的條件;第(Ⅱ)問,求二面角的大小,若圖形中容易建立空間直角坐標(biāo)系,則就求兩個(gè)半平面的法向量,從需得出結(jié)果.對(duì)第(Ⅰ)問,證明線面平行時(shí),容易漏掉條件;對(duì)第(Ⅱ)問,二面角的大小與兩個(gè)法向量夾角相等或互補(bǔ)的關(guān)系,一部分同學(xué)容易得出它們相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個(gè)可能取值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分) 已知P(3,2),一直線過點(diǎn)P,
①若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;
②若直線與x、y軸正半軸交于A、B兩點(diǎn),當(dāng)面積為12時(shí)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1n(x﹣1)﹣k(x﹣1)+1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
(3)證明: 且n>1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O,A,B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測(cè)繪隊(duì)員在A、B之間的直線公路上任選一點(diǎn)C作為測(cè)繪點(diǎn),用測(cè)繪儀進(jìn)行測(cè)繪,O地為一磁場(chǎng),距離其不超過 的范圍內(nèi)對(duì)測(cè)繪儀等電子儀器形成干擾,使測(cè)量結(jié)果不準(zhǔn)確,則該測(cè)繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)今年初用72萬元購買一套新設(shè)備用于生產(chǎn),該設(shè)備第一年需各種費(fèi)用12萬元,從第二年起,每年所需費(fèi)用均比上一年增加4萬元,該設(shè)備每年的總收入為50萬元,設(shè)生產(chǎn)x年的 盈利總額為y萬元.寫出y與x的關(guān)系式;
①經(jīng)過幾年生產(chǎn),盈利總額達(dá)到最大值?最大值為多少?
②經(jīng)過幾年生產(chǎn),年平均盈利達(dá)到最大值?最大值為多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m, n是兩條不同的直線,是三個(gè)不同的平面, 給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號(hào)是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓的圓心是直線與軸的交點(diǎn),且與直線相切,求圓的標(biāo)準(zhǔn)方程;
(2)已知圓,直線過點(diǎn)與圓相交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com