【題目】古代數(shù)學名著《九章算術》中記載:今有羨除,下廣六尺,上廣一丈,深三尺,末廣八尺,無深,袤七尺,問積幾何?羨除,即三個面是等腰梯形,兩側(cè)面是直角三角形的五面體我們教室打掃衛(wèi)生用的灰斗近似于一個羨除,又有所不同.如圖所示,ABCD是一個矩形,ABEFCDFE都是等腰梯形,且平面ABCD⊥平面ABEF,AB30BC10,EF50BE26.則這個灰斗的體積是(

A.3600B.4000C.4400D.4800

【答案】C

【解析】

分別過點A,BEF的垂線,垂足為M,N,連接DM,CN,則FMEN10,又BEAF26,可得AMBN24,把多面體體積轉(zhuǎn)化為棱柱與棱錐體積求解.

分別過點A,BEF的垂線,垂足為M,N,連接DM,CN,如圖,

FMEN10,

BEAF26,∴AMBN24,

ABCD是一個矩形,且平面ABCD⊥平面ABEF,

AD⊥平面ABEF,BC⊥平面ABEF

∴多面體ADMBCN為三棱柱,體積為

三棱錐DAFM的體積為AD

這個灰斗的體積是3600+2×400=4400.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1(a>b>0)的右焦點F與拋物線C2的焦點重合,C1的中心與C2的頂點重合.過F且與x軸重直的直線交C1A,B兩點,交C2C,D兩點,且|CD|=|AB|

1)求C1的離心率;

2)若C1的四個頂點到C2的準線距離之和為12,求C1C2的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系.直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)).

1)寫出直線的普通方程和圓的極坐標方程;

2)已知點,直線與圓交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當時,,則下列命題正確的是(

A.時,

B.函數(shù)3個零點

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十五巧板、又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥獸、魚蟲、文字等圖案.十五巧板由十五塊板組成一個大正方形(如圖1),其中標號為2,3,45的小板均為等腰直角三角形,圖2是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點,該點恰好取自陰影部分中的概率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1(﹣c,0),F2c,0)分別為雙曲線C1a0,b0)的左、右焦點,直線l1C交于M,N兩點,線段MN的垂直平分線與x軸交于T(﹣5c,0),則C的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=2|x+2|+|x3|

1)求不等式fx≥8的解集;

2)若a0b0,且函數(shù)Fx)=fx)﹣3a2b有唯一零點x0,證明:fx0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程是為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

1)曲線的普通方程和直線的直角坐標方程;

2)求曲線上的點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)統(tǒng)計某射擊運動員隨機射擊一次命中目標的概率為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機模擬的方法,先由計算機產(chǎn)生09之間取整數(shù)值的隨機數(shù),用0,1,2表示沒有擊中,用34,56,78,9表示擊中,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

95977424,7610,42817520,02937140,98570347,4373,

0371,6233,26168045,6011,36618638,7815,1457,5550

根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰有3次命中的概率為( ).

A.B.C.D.

查看答案和解析>>

同步練習冊答案