【題目】已知橢圓,點(diǎn)為橢圓外一點(diǎn),過點(diǎn)向橢圓作兩條切線,當(dāng)兩條切線相互垂直時(shí),點(diǎn)在一個(gè)定圓上運(yùn)動(dòng),則該定圓的方程為__________

【答案】

【解析】

設(shè)點(diǎn),分兩種情況討論,一是直線的斜率存在且非零時(shí),得出;二是當(dāng)直線的斜率不存在或斜率等于零時(shí),P也符合上述關(guān)系,從而求得結(jié)果.

設(shè)點(diǎn),當(dāng)直線的斜率存在時(shí),設(shè)直線的斜率為,則有直線的方程為,

與橢圓方程聯(lián)立得:,

整理得:

因?yàn)橹本與橢圓相切,所以,

,

因橢圓外一點(diǎn)所引的兩條切線互相垂直,則有

為方程的兩根,

,整理得:

當(dāng)直線的斜率不存在或斜率等于零時(shí),易得點(diǎn)P的坐標(biāo)為,顯然也滿足方程

綜合以上討論得,對(duì)任意的兩條互相垂直的切線,點(diǎn)P的坐標(biāo)均滿足方程,

故所求的定圓的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓E的方程為 (a>b>0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足BM2MA,直線OM的斜率為.

(1)E的離心率e;

(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)的縱坐標(biāo)為,求E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓過點(diǎn),離心率;點(diǎn)在橢圓上,延長(zhǎng)與橢圓交于點(diǎn),點(diǎn)中點(diǎn).

(1)求橢圓C的方程;

(2)若是坐標(biāo)原點(diǎn),記的面積之和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;

若對(duì)于都有成立,試求a的取值范圍;

當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)若不等式對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是雙曲線的兩個(gè)焦點(diǎn),圓與雙曲線位于軸上方的兩個(gè)交點(diǎn)分別為,若,則雙曲線的離心率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底, 為常數(shù)).

討論函數(shù)的單調(diào)性;

對(duì)于函數(shù),若存在常數(shù),對(duì)于任意,不等式都成立,則稱直線是函數(shù)的分界線,設(shè),問函數(shù)與函數(shù)是否存在“分界線”?若存在,求出常數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級(jí)參加期末考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(滿分為100分),將數(shù)學(xué)成績(jī)進(jìn)行分組,并根據(jù)各組人數(shù)制成如下頻率分布表:

(1)寫出的值,并估計(jì)本次考試全年級(jí)學(xué)生的數(shù)學(xué)平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)現(xiàn)從成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選出兩名同學(xué),從成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選一名同學(xué),共三名同學(xué)參加學(xué)習(xí)習(xí)慣問卷調(diào)查活動(dòng).若同學(xué)的數(shù)學(xué)成績(jī)?yōu)?3分,同學(xué)的數(shù)學(xué)成績(jī)?yōu)?/span>分,求兩同學(xué)恰好都被選出的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案